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  Cvetkovic, Dusica  

MECHANISMS AND CHEMOPREVENTION OF OVARIAN CARCINOGENESIS 
FINAL PROGRESS REPORT 

 
 
INTRODUCTION 

 
 Ovarian cancer is the most fatal gynecological malignancy because of its asymptomatic 
development and frequent diagnosis at an advanced stage. The understanding of the early 
molecular events leading to the disease is important for the development of strategies for its early 
diagnosis and prevention, which could improve patient survival and quality of life. We have 
demonstrated that DMBA-induced mutagenesis in the rat ovary, in combination with 
gonadotropin hormone-mediated enhanced mitogenesis of the ovarian surface epithelium, 
produces lesions ranging from preneoplastic, early neoplastic to advanced ovarian tumors, which 
resemble human disease. The goal of this research project was to use the DMBA-gonadotropin 
animal model to study the molecular mechanisms underlying ovarian oncogenesis and to conduct 
a preclinical trial for its chemoprevention. The original specific aims of the study were:  
1) Determine the molecular genetic mechanisms underlying ovarian oncogenesis in the rat 
DMBA/gonadotropin model of ovarian cancer  
2) Determine the efficacy of the COX-1 inhibitor SC-560 to prevent the appearance and/or 
progression of DMBA-induced ovarian lesions   
3) Study the in vivo mechanisms of the putative chemopreventive action of COX-1 
inhibition  
 However, due to change of Principal Investigator (PI) in the last year of the study, the 
original research plan has been modified. Since the animal protocol pertaining to this project has 
been closed and the proposed chemoprevention trial in rats has not been initiated, only specific 
aim 1 is being carried out.  
 
 
BODY 

 
 During the course of the project supported by this DOD-CDMRP grant, the following 
progress has been achieved along the proposed aims of the study: 
 1) Determine the molecular genetic mechanisms underlying ovarian oncogenesis in 
the rat DMBA/gonadotropin model of ovarian cancer. A large number of DMBA-induced 
ovarian lesions were generated in the rat at different stages of neoplastic development to provide 
statistical power and significance of the findings from their molecular classification and 
characterization. Using funds provided by the Fox Chase Cancer Center (FCCC) NCI Ovarian 
Cancer SPORE Grant, a two-phase carcinogenesis experiment was initiated at the end of 2003, in 
which 160 female 6-week old virgin female Sprague-Dawley rats were subjected to bilateral 
survival surgery to the ovaries. Animals were divided into four arms and treated: a) Control 
groups a1 (20 animals, no hormones) and a2 (20 animals, with hormones): beeswax-impregnated 
surgical sutures were implanted in the portion of each ovary that is contra-lateral to the fallopian 
tube; b) DMBA-/+hormone group (total 100 animals), b1 DMBA/beeswax-impregnated surgical 
sutures were implanted bilaterally in the ovaries of the animals as above and b2. Two months 
following the surgical procedure, rats in group a2 and b2 were subjected to four cycles of 
sequential administration of hormones PMSG and hCG. These procedures are described in the 

4
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Experimental Design and Methods section of our grant proposal and in our Cancer Research 
paper [1]. All treated animals were maintained for one year from the survival surgical procedure, 
or until disease development and animal distress became evident. Rats were sacrificed according 
to the initiation of treatment, in December 2004 and January 2005, following the Institutional 
Animal Care and Use Committee (IACUC) approved guidelines. 
 All of the ovaries were harvested and fixed in 70% ethanol at 4°C for 18 hr, paraffin 
processed through a 12 hr cycle with a Tissue-Tek VIP 5 (Sakura Finetek, Torrance, CA) 
vacuum infiltration processor, and then paraffin embedded with a Histo-Center II (Fischer 
Scientific, Pittsburgh, PA) embedding station. Three 5 µm-sections, approximately 50 µm apart 
of each other were obtained from the two end-portions of each ovary, stained with H&E and 
subjected to histopathological evaluation. 
 Table 1 indicates the incidence of ovarian lesions observed in the four experimental arms, 
subdivided into 3 subgroups (nonneoplastic, putative preneoplastic and neoplastic lesions). This 
experiment was performed to verify the potential promoting role of gonadotropin hormones in 
ovarian cancer development, and to generate sufficient numbers of ovarian lesions for molecular 
characterization and elucidation of the mechanisms behind their development. Based on the 
observed statistically significant differences in lesion incidence between arms a1 and a2, and b1 
and b2 (Table 2), and our published data [2], we conclude that gonadotropin hormones play a 
major role in the promotion of ovarian cancer. 

Table 1.  DMBA ovarian carcinogenesis with gonadotropin co-treatment 

 
Table 2.  Statistical significance of differences in lesion incidence induced by gonadotropin 
co-treatment (* - determined by χ-square and/or Fisher’s exact tests) 

per ovary per animal

Experimental Arm

a1 - Surgery only (20 animals) % 37.5 40.0 22.5 0.0 0.0 70.0 30.0 0.0

a2 - Surgery+Hormones (19 animals) % 20.8 21.1 58.1 0.0 0.0 26.1 73.9 0.0

b1 - DMBA (47 animals) % 15.7 20.5 62.8 1.0 6.3 13.0 78.7 2.1

b2 - DMBA+Hormones (45 animals) % 1.1 15.4 75.8 7.7 0.0 8.8 75.8 15.4

Comparison* Site of the 
lesions P-value

Ovary 0.0061

Animal 0.0064

DMBA vs. Ovary 0.0002
DMBA+Hormones Animal 0.0422

Surgery vs. 
Surgery+Hormones
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 A number of different types of histologic changes were observed in the ovary [1]. 
Nonneoplastic lesions include chronic inflammation, foreign body granuloma, suture granuloma, 
scar and prominent corpora lutea; whereas putative preneoplastic lesions represent bursal and 
ovarian surface epithelial (OSE) papillomatosis, real stratified and pseudostratified hyperplasia, 
inclusion cysts and deep invaginations. All the preneoplastic lesions can present with or without 
atypia. Both the preneoplastic and neoplastic ovarian lesions in arms b1 and b2 displayed a more 
complex, advanced histology, such as thicker stratified epithelium and more pronounced 
papillary structures or surface invaginations, relative to those in arms a1 and a2. The incidence of 
cancer in the DMBA/gonadotropin rat model of ovarian oncogenesis was 6%. Namely, 8 
neoplastic lesions were observed in 131 animals, 7 in arm b2, and one in arm b1, out of which 6 
were invasive (an undifferentiated and a differentiated adenocarcinoma, a Leydig-Sertoli tumor, 
two granulosa/theca cell tumors, and a papillary serous tumor). 
 A similar report has recently demonstrated that rats treated with systemic estrogen and 
local ovarian DMBA administration simultaneously develop preneoplastic and neoplastic lesions 
in the breast and ovary [3]. The same criteria was used to evaluate progression toward ovarian 
cancer as in our study, namely putative ovarian preneoplastic changes such as inclusion cysts, 
epithelial hyperplasia, papilloma and stromal hyperplasia.  

 
Molecular characterization of DMBA/gonadotropin-induced rat ovarian lesions 

 
 Tp53 and Ki-Ras point mutations, that are characteristic for human ovarian cancer, are 
also present in the DMBA/gonadotropin-induced preneoplastic rat ovarian lesions. Additionally, 
an overexpression of estrogen and progesterone receptors in preneoplastic and early neoplastic 
lesions and their loss in advanced tumors, suggest a role of these receptors in ovarian cancer 
development [1].  

Figure 1.  IHC staining for COX-1 (left half-panel A and B) and COX-2 (right half-panel A and B) protein 
expression in rat ovaries: Left (L. Ovary) untreated control (top panels) and Right (R. Ovary) DMBA-treated 
(lower panels). A. Cystadenocarcinoma; B. Surface epithelial papillary hyperplasia. Sections of left and right 
ovary from the same animal were mounted on the same slide and subjected to IHC at identical conditions.  
Pictures of each pair of sections per slide were taken at identical brightness/contrast settings. 

COX-1 COX-2 

L. Ovary 
(Control) 

R. Ovary 
(DMBA) 

CystAdCA OSE Papillary Hyperplasia 

COX-1 COX-2 A B 
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 To determine whether, similar to human disease [4], COX-1 and/or COX-2 
expression/activation is linked with ovarian neoplastic development in this animal model, we 
initiated collaboration with Dr. S. K. Dey at Vanderbilt University Medical Center.  Histological 
slides were prepared from tissue sections obtained from formalin-fixed paraffin-embedded 
(FFPE) rat ovaries treated with DMBA or DMBA/hormones and containing putative 
preneoplastic (7 samples) or neoplastic lesions (5 samples). Each slide also contained a tissue 
section from the corresponding contra-lateral, control ovary. Individual slides, sent to Dr. Dey, 
were subjected to immunohistochemical (IHC) analysis for COX-1 or COX-2 expression. 
Elevated expression of both enzymes was observed in the majority of analyzed putative 
preneoplastic lesions and all neoplastic lesions regardless of progression. Neither protein was 
detectable in the OSE of normal (control) ovaries. Even though in most cases, the expression 
level of COX-1 was higher than that of COX-2, the data implied a strong association of both 
enzymes with ovarian cancer development in this model. Figure 1 shows examples of changes in  

COX-1/2 expression. These results are interesting, and though they support our original proposal 
for the pre-clinical testing of a COX-2 specific inhibitor (celecoxib) (see 2. below), they also 
suggest that a COX-1 specific inhibitor (such as SC-560, Cayman Chemical Co) may be more 
effective as an agent for chemoprevention of ovarian cancer. The results also warrant further 
analysis of additional ovarian lesions, both putative preneoplastic and neoplastic, in order to 
evaluate the prevalence of the observed changes in COX-1/2 expression, and whether they are 
also present in putative preneoplastic lesions induced by gonadotropin hormone treatment alone.  

 We have previously performed a global, microarray-based gene expression analysis of 
human ovarian tumors and normal human ovarian surface epithelia (non-cultured or short-term 
cultured). Among the genes identified with differential expression between different types of 
tumors and normal OSE, the most interesting was the NF-κB regulator gene A20. While this 
gene was found expressed at moderate to high levels in the normal OSE, its expression was 
undetectable in all tested tumors, irrespective of their histological subtype or neoplastic stage 
(Fig. 2). This result suggests that A20 plays a confounding role in the development of ovarian 
carcinomas and could potentially play such a role in the DMBA/gonadotropin model. A20 is an 
enzyme with dual ubiquitination and de-ubiquitination activities and plays an important role as a 
switch between activation and inactivation of the NF-κB survival transcription factor [5, 6]. 
While A20 facilitates the coupling of cytokine and other receptor signals to the IKK signalosome 

complex through RIP and other MAP3Ks, it is also essential for termination of the same signals 
and inhibition of a persistent NF-κB activation. The persistent, elevated activation of NF-κB has 
been associated with the malignant progression and development of resistance to cytotoxic 
treatment of many types of tumors. Therefore, loss of A20 in ovarian cancer may be one of the 
underlying mechanisms and a very important target for the design of new strategies for 
prevention and treatment of the disease. In support of this observation, the preliminary results 

A20 mRNA expression in primary ovarian specimens
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Figure 2.  Microarray-determined A20 
mRNA expression in primary human 
ovarian cancer specimens of different 
histological subtype and malignant 
stage, and in normal human OSE 
(OSE-1: average of 4 short-term 
cultures; OSE-2: average of 2 non-
cultured samples).  Data was confirmed 
by real-time qRT-PCR analysis (data 
not shown) 
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obtained from a phase I trial of the proteasome inhibitor bortezomib in combination with 
platinum agents (carboplatin) for overcoming the development of chemoresistance of ovarian 
cancer patients are encouraging [7]. Based on our results from the analysis of human normal 
OSE, we suggest that A20 would also be expressed at moderate levels in the normal rat OSE. 
Though the examination of expression status of A20 in the normal rat OSE and in 
DMBA/hormone-induced lesions at different stages of neoplasia by real-time qRT-PCR was 
originally planned, the analysis has not been initiated.  
 
Genomic analysis of DMBA/gonadotropin-induced rat ovarian lesions 
   
 With the guidance of our collaborator, pathologist Dr. A. Klein-Szanto, we have achieved 
a complete histopathological examination of 262 ovaries harvested from 131 animals included in 
the four arms of the carcinogenesis experiment described above. This allowed the identification 
of ovaries that contain different types of lesions and the selection of lesions for the purpose of 
this study according to their classification. In a streamline fashion, ovaries selected for a certain 
type of lesion were then subjected to further processing in preparation for genomic analysis. In 
order to better preserve the quality of RNA, ethanol-fixed paraffin-embedded (EFPE) ovarian 
tissue blocks were kept at 4°C at all times. Depending on the size of lesion and its epithelial cell 
component, 4-6 5µm-sections were generated from the portion of the organ adjacent to the 
corresponding H&E sections and either stored at –80°C until they were subjected to laser-capture 
microdissection (LCM) or processed immediately. Prior to proceeding with laborious 
microdissections, the quality of isolated RNA was checked on tissue scrapes, using the Agilent 
2100 Bioanalyzer and samples with unadequate quality were excluded from the analysis. 
Ovarian tissue sections were stained with HistoGene LCM Staining Kit (Arcturus /Molecular 
Devices, Sunnyvale, CA), and 2,000-5,000 cells from DMBA/gonadotropin-induced ovarian 
lesions were collected on CapSure LCM Caps using either PixCell II or AutoPix LCM Systems 
(Arcturus). It is estimated that 10 pg of RNA is obtained from a single cell, therefore 5,000 of 
LCM-captured cells contain approximately 50 ng of RNA. 
 It has been reported that a considerable variation in the microarray data is incorporated 
when different sets of arrays are used to compare specimens in a single experiment. To avoid 
this, and since the preparation of tissue specimens, purification and amplification of RNA and 
quality testing are the rate-limiting procedures, we have processed all lesion samples to the point 
where all hybridizations are carried out serially within a short period of time and with the same 
lot of microarrays.  

We would like to emphasize that in February of 2007 the PI status on the project has 
changed. Dr. Patriotis had left FCCC, and Dr. Cvetkovic, who had no prior involvement in this 
project, took over to finish up the study. LCM-derived tissue samples generated along the lines 
of this DOD-funded research were transferred to the new laboratory. However, these samples 
were fixed by an alternative method, using ethanol, and then paraffin embedded, while the 
golden standard for molecular analyses are snap-frozen tissue specimens [8, 9]. The rationale 
behind ethanol fixation was to preserve tissue architecture and cellular morphology of the rat 
ovary, while allowing for the recovery of good quality RNA from microdissected cells. Despite 
the loss in morphologic quality in frozen sections, especially in non-cover-slipped slides for 
LCM, RNA quality is generally much better than RNA obtained from ethanol- or formalin-fixed 
tissues [10]. Moreover, the Arcturus LCM systems that were initially used to procure biological 
samples for this study have in the meantime undergone substantial technical improvements. The 
newer generations of platforms, the upgraded manual PixCell II, and the automated Veritas and 
Arcturus XT Microdissection Systems, have features that allow for superior visualization of 
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cellular morphology, irrespective of the tissue fixation method, compared to previous generation 
PixCell II and AutoPix systems.  
  Though others have successfully recovered RNA from EFPE human and animal tissues 
sufficient for downstream molecular profiling studies [11, 12], we wanted to check the quality 
and amplifiability of RNA from DMBA/hormone-induced rat ovarian lesions on several levels 
prior to microarray analysis. We have consulted with the application scientists at Arcturus on 
how to approach this issue. Since Arcturus makes kits designed exclusively for extraction of 
RNA from frozen (PicoPure RNA Isolation Kit) or FFPE tissues (Paradise Reagent System), we 
needed to determine which one would be more appropriate for our EFPE samples. In addition to 
these, two other kits were included in the test, Recover All Total Nucleic Acid Isolation Kit 
(Ambion/Applied Biosystems, Austin, TX) and Optimum FFPE RNA Isolation Kit (Asuragen). 
Two randomly selected EFPE rat ovarian tissue samples from our experiment where cut onto 
four slides, and each one was scraped off and used for RNA extraction with one of the four 
nucleic acid isolation kits. The quantification and integrity determination of isolated RNA were 
carried out by micro fluidic electrophoresis on Agilent 2100 Bioanalyzer using the RNA 6000 
Pico LabChip Kit (Agilent Technologies, Santa Clara, CA). Additional sample quality 
assessment was done by quantitative real-time PCR using the protocol developed by Arcturus 
(Paradise Sample Quality Assessment Kit). This protocol utilizes 3’ and 5’ primer sets to amplify 
a portion of the beta-actin gene. The 3’/5’ ratio evaluates the abundance of the average beta-actin 
cDNA from the 3’ end compared to the abundance of a 5’ sequence using the quantified PCR 
yields of each amplicon. If most of the cDNA contains both the 3’ and 5’sequence target, the 
ratio of the PCR product for 3’/5’ is close to one. As the RNA starts exhibiting some level of 
degradation, the 3’/5’ ratio tends to become greater than one. Depending on the ratio, an 
estimation of the RNA quality can be made. A suggested cut-off is ≤20. Using four different 
nucleic acid isolation kits, both sample 1 and sample 2 yielded 3’/5’ ratios in the range from 3-11 
(Table 3), indicating acceptable quality and amplifiability of RNA from DMBA/hormone-
induced rat ovarian lesions. There were no significant differences between the four kits; hence 
we decided to use the PicoPure RNA Isolation Kit, as originally proposed.  
 RNA from EFPE rat tissue scrapes exhibited in general a heterogeneous profile on the 
Bioanalyzer, with either broadened 18s and 28s peaks, or without the peaks (Figure 3). These 
profiles indicate compromised integrity of RNA, more resembling RNA profiles of FFPE tissues, 
than those of frozen tissues. However, researchers from our and other institutions have 
successfully performed microarray analysis on partially degraded RNA [13, 14]. Based on 
published data, we felt that our LCM-derived, partially degraded RNA with relatively low RNA 
integrity number (RIN) values, would still be viable in microarray analysis.  
 
 
Table 3. Comparison of RNA isolation kits for EFPE samples 
 

 Optimum FFPE 
RNA Isolation Kit 

(Asuragen) 

All Total Nucleic 
Acid Isolation Kit 

(Ambion) 

PicoPure RNA 
Isolation Kit 
(Arcturus) 

Paradise RNA 
Isolation System 

(Arcturus) 
Sample 1 
3’/5’ ratio 

 
2.8 

 
7.0 

 
11.4 

 
2.9 

Sample 2 
3’/5’ ratio 

 
2.7 

 
3.8 

 
6.2 

 
7.8 
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Figure 3. Representative bioanalyzer profiles of RNA isolated from EFPE rat ovaries by 
Paradise (A, B) and Picopure Kits (C, D) (tissue scrapes) 
 
 
 Amino Allyl MessageAmp II aRNA Amplification Kit (Ambion) was used to amplify 
and Cy-3-label 24 individual LCM-derived samples, 8 in each of the three above described 
ovarian lesion categories/groups (nonneoplastic, putative preneoplastic and neoplastic). These 
samples were from b1 and b2 arms of the experiment. Quantification and integrity assessments 
of RNA were carried out on the Bioanalyzer. One of the primary limitations of microarray 
analysis is large amount of labeled input RNA (several µg) required for hybridization [15]. When 
the starting cell population is limited, such as in LCM-procured samples, a second round of 
linear amplification is necessary in order to have sufficient quantities of amplified RNA (aRNA) 
to use for probe synthesis. In our hands, approximately 50 ng of total RNA is amplified in two 
rounds and 1 µg of Cy3-labeled aRNA is put into hybridization reaction. Universal Rat 
Reference RNA (Stratagene, La Jolla, CA) is used in the positive control amplification reaction.   
 Although previous annual reports have indicated the intent to use the Affymetrix 
GeneChip system for the genomic analysis of rat ovarian lesions, due to change of PI, limited 
time frame and resources, as well as cost-effectiveness, the decision has been made to utilize the 
Agilent platform instead. This platform is available at the Fox Chase Cancer Center DNA 
Microarray Facility. Cy3-labeled samples were hybridized to Agilent 4x44K Whole Rat Genome 
arrays. Microarray images were processed using Agilent Feature Extraction software, v9.5. RNA 
sample quality issues and array quality control failures necessitated the removal of several arrays 
from the analysis, leaving 5 nonneoplastic samples and 6 each from the other two groups, 
preneoplastic and neoplastic. 
 Array data was preprocessed and analyzed using Bioconductor’s limma package [16, 17]. 
Median signal intensities were background corrected using the normexp method, and quantile 
normalization was performed to make intensity distributions consistent across arrays. Prior to 
differential expression analysis, a non-specific filter was applied to the probe list: probes were 
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removed if they lacked association with an Entrez gene ID, or if they had expression intensities 
close to background for a large percentage of the arrays. 
 Differential expression analysis between all pairs of groups was performed using the 
limma package, which implements the computation of empirical Bayes moderated two-sample t-
statistics. P-values from these tests were adjusted for multiple comparisons using the Benjamini-
Hochberg method to control the false discovery rate (FDR) [18]. A probe was declared 
significant if it had a FDR less than 5%. With this significance criterion, there were no 
differentially expressed probes for the comparisons of preneoplastic vs. nonneoplastic or 
neoplastic vs. preneoplastic, within or among b1 and b2 arms (Figure 4). Specifically, no 
changes in gene expression were found in arm b1, between nonneoplastic and preneoplastic 
samples, and in arm b2, between nonneoplastic and preneoplastic samples; also no changes in 
arm b1 among preneoplastic and neoplastic, and in b2 among preneoplastic and neoplastic 
samples. There were 558 probes identified as significantly differentially expressed in the 
comparison between neoplastic, in either b1 or b2 arms, to its respective nonneoplastic controls. 
The inherent problem with this study was only one neoplastic/cancer lesion in b1 arm. Therefore, 
it made sense to analyze the data within the experimental arms. 
 

 
Figure 4. Probability histogram of microarray differences between preneoplastic vs. 
nonneoplastic (PNP vs B), neoplastic vs. nonneoplastic (C vs B) and neoplastic vs. preneoplastic 
(C vs PNP) samples 
 
 
 In our microarray analysis of the rat ovarian lesions we expected to identify genes whose 
changes in expression are associated with increased ovarian lesion severity and malignant 
progression, from nonneoplastic and preneoplastic to neoplastic. We wanted to determine 
whether a continuum of OSE cell malignant development exists in this model, similar to the 
multistep progression model of colorectal tumorigenesis proposed by Fearon and Vogelstein 
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[19], and to identify genes whose changes in expression and/or functional activity are associated 
with this process. The apparent OSE cell origin of DMBA-induced tumors [20] make this model 
not only convenient, but also relevant to disease in women and perhaps valid for testing of new 
prevention agents. Since we did not observe significant changes in gene expression among 
nonneoplastic vs. preneoplastic, and among preneoplastic vs. neoplastic lesions, it appears that 
DMBA/hormone treatment in the rat causes tumor formation without step-wise progression from 
benign to malignant. Among the total of 558 differentially expressed probes between the 
neoplastic and nonneoplastic group, we found a number of interesting genes that are associated 
with human ovarian cancer. We have used a cut-off value of 4-fold for both up and 
downregulated genes, cancer group versus nonneoplastic control, to shorten the original list of 
genes (Tables 4 and 5). The most interesting genes in the upregulated group include those 
encoding for vascular endothelial growth factor A; cholinergic receptor, nicotinic, beta 
polypeptide 4; tumor suppressors breast cancer 2 and Ras association (RalGDS/AF-6) domain 
family member 2; two dynamins, dynamin 1-like and dynamin 2; two protein phosphatase 
associated genes, protein phosphatase 1 (formerly 2C)-like and protein phosphatase 1, regulatory 
(inhibitor) subunit 9A; cisplatin resistance-associated overexpressed protein; ATP-binding 
cassette, sub-family B (MDR/TAP), member 1 that is involved in multidrug resistance; a 
structural protein that predicts prognosis of ovarian cancer in women, procollagen, type IV, alpha 
4; and cellular retinoic acid binding protein 1 involved in vitamin A signaling. There is a clinical 
trial for recurrent ovarian cancer involving anti-VEGF antibody. Some of the interesting genes 
from the list of downregulated transcripts are insulin growth factor l; collagen, type I, alpha 2; 
cell adhesion associated cadherin, EGF LAG seven-pass G-type receptor 2 (flaming), and fatty 
acid binding protein 3, muscle and heart. These genes have been studied in human ovarian 
cancer via microarray and other types of analyses [21-25]. It is interesting that our microarray 
analysis did not show differences in the expression among groups of hormone receptors, as 
suggested by our IHC results.  
 
 
Table 4. Genes upregulated in neoplastic vs. nonneoplastic rat ovarian lesions (>4-fold), 
associated with human ovarian cancer 
 
Gene Ref Seq Fold change⇑  FDR 
Chrnb4  NM_052806 43.45 0.013 
Dnm2  NM_013199 30.15 0.015 
Col4a4 NM_001008332 20.54 0.021 
Tpm3 NM_057208 19.65 0.021 
Erbb2 NM_017003 11.00 0.021 
Dnm1l NM_053655 10.75 0.015 
Vegfa NM_001110333 9.99 0.023 
Ppm1l NM_001107681 8.56 0.039 
Brca2 NM_031542 7.73 0.020 
Hnrnpa1 NM_017248 7.59 0.013 
Rassf2 NM_001037096 7.42 0.032 
Csnk1a1 NM_053615 6.38 0.020 
Hdac5 XM_001081495 6.20 0.017 
Rab8a NM_053998 6.19 0.020 
Ppp1r9a NM_053473 5.47 0.030 
Smptb NM_182818 5.46 0.038 
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Arrb1 NM_012910 5.34 0.038 
Crop NM_001108291 5.26 0.024 
Abcb10 NM_001012166 5.20 0.019 
Hras NM_001098241 5.16 0.045 
Car5a NM_019293 4.68 0.038 
Arnt2 NM_012781 4.52 0.032 
Npm1 NM_012992 4.34 0.015 
Arhgap10 NM_001109501 4.31 0.043 
Gadd45b NM_001008321 4.30 0.013 
Crabp1 NM_001105716 4.28 0.022 
Plxna2 NM_001105988 4.25 0.043 
  
 
Table 5. Genes downregulated in neoplastic vs. nonneoplastic rat ovarian lesions (>4-fold), 
associated with human ovarian cancer 
 
Gene Ref Seq Fold change⇓  FDR 
Crhr1 NM_030999 4.31 0.032 
Igf1 NM_001082477 4.45 0.42 
Btbd3 NM_001107782 4.60 0.021 
Col1a2 NM_053356 4.87 0.032 
Ercc6 NM_001107296 5.25 0.023 
Lhcgr NM_012978 5.56 0.030 
Ancrd28 XM_001057585 6.58 0.008 
Celsr2 XM_001070611 7.45 0.015 
Fabp3 NM_024162 7.56 0.019 
Stc1 NM_031123 8.10 0.017 
 
 
 2) Determine the efficacy of the COX-1 inhibitor SC-560 to prevent the appearance 
and/or progression of DMBA-induced ovarian lesions. The goal of specific aim 2 was to 
determine a reasonable choice of putative chemopreventive agent for a preclinical 
chemoprevention trial using the DMBA/hormone animal model of ovarian cancer, developed and 
characterized by us. The original goal of the proposed chemoprevention preclinical trial was to 
test the efficacy of the COX-2 specific inhibitor Celecoxib to prevent the appearance and/or 
progression of DMBA-induced ovarian lesions. Most recently, the results of large clinical trials 
with this and other COX-2 specific inhibitors have demonstrated serious toxicities and side 
effects on the basis of which clinical trials have been put temporarily on hold. Because of the 
overall benefit of these agents, their testing will probably continue, however, we decided to 
postpone the proposed preclinical testing of Celecoxib in order to avoid the possibility of 
obtaining results that may deem unrelevant for the clinic. Previously, in collaboration with Dr. S. 
K. Dey, we tested a number of rat ovarian samples containing DMBA-induced lesions of various 
degrees of neoplastic development, for the relative expression of COX-1 and 2. This is due to his 
recent observations that COX-1 but not COX-2 is frequently overexpressed in human ovarian 
cancers [4]. The results from this collaborative study strongly suggest that COX-1 protein is also 
present in the rat ovarian lesions at relatively higher levels than COX-2, and more importantly, 
contrary to COX-2, elevated expression of COX-1 is observed both in putative preneoplastic and 
neoplastic lesions. Based on these results, we opted to test a COX-1 specific inhibitor as a 
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potential chemopreventive agent for ovarian cancer development [26]. SC-560, available from 
Cayman Chemical Co, is orally active in the rat, where 10mg/kg completely abolishes the 
ionophore-induced production of thromboxane B2 in whole blood. This agent can be 
administered to animals via drinking water [26] in a preclinical chemoprevention trial with the 
rat DMBA model. However, due to change of PI and closure of the DMBA/gonadotropin animal 
protocol pertaining to this project, the proposed COX inhibitor chemoprevention trial in rats has 
not been initiated. Therefore, specific aims 2 and 3 relating to the project are not being carried 
out.  
 
KEY RESEARCH ACCOMPLISHMENTS 

 
The following are the key research accomplishments during the course of this DOD-CDMRP 

grant: 
1) by Dr. Patriotis: 
•  Completion of the DMBA/hormone ovarian carcinogenesis experiment and collection of 

all rat ovarian tissues. 
•  Completion of histopathological analysis of all ovaries harvested from the above 

experiment and selection of ovaries harboring lesions; lesion classification according to 
previously described lesion categories. 

•  Statistical analysis of obtained data confirming the role of gonadotropin hormones as 
promoters of ovarian cancer development. 

•  Identification of mutations in the Tp53 and Ki-Ras genes, which are the most common 
mutations in human ovarian tumors, in preneoplastic lesions in the DMBA-induced 
ovarian cancer model.   

•  Finding of overexpression of estrogen and progesterone receptors in preneoplastic and 
early neoplastic lesions and their loss in advanced tumors in the DMBA model. 

•  IHC analysis indicated a strong association of COX-1, and to a lesser degree COX-2 
elevated expression with ovarian cancer development in the DMBA model. 

•  The observed frequent loss of the A20 ubiquitin-editing enzyme in human ovarian cancer 
may represent one of the key mechanisms leading to elevated, persistent activation of 
NF-κB and the development of platinum chemoresistance. Based on the findings from 
human samples A20 should be expressed in normal rat OSE and lost in the neoplastic 
lesions.  

•  Collection of the epithelial component of lesions from all selected ovaries by LCM.  
 
2) by Dr. Cvetkovic: 
•  Purification and extensive quantitative and qualitative analysis of total RNA from LCM-

derived samples. 
•  RNA from ovarian lesions subjected to two round of amplification and assessed for 

quantity and quality prior to microarray analysis. 
•  Microarray analysis of nonneoplastic, putative preneoplastic and neoplastic rat ovarian 

lesions. 
•  Differential expression analysis has revealed significant changes in gene expression 

between neoplastic and nonneoplastic ovarian lesions in the rat DMBA/hormone model 
of ovarian tumorigenesis. Some of these genes, such as Brca2, Rassf2, Crabp1, Vegfa and 
Igf1 have been comprehensively studied in human ovarian cancer. 



  Cvetkovic, Dusica   

  15 

•  Differential expression analysis has shown no significant changes in gene expression 
between preneoplastic and nonneoplastic, as well as preneoplastic and neoplastic ovarian 
lesions in the rat DMBA/hormone model of ovarian tumorigenesis. 

 
REPORTABLE OUTCOMES 

 
• Stewart SL, Querec TD, Ochman AR, Gruver BN, Bao R, Babb JS, et al. 

Characterization of a carcinogenesis rat model of ovarian preneoplasia and neoplasia. 
Cancer Res. 2004 Nov 15;64(22):8177-83. 

 
• Stoyanova R, Querec TD, Brown TR, Patriotis C. Normalization of single-channel DNA 

array data by principal component analysis. Bioinformatics. 2004 Jul 22;20(11):1772-84. 
 
CONCLUSIONS 
 
 We have developed a modified and improved model of ovarian carcinogenesis in the rat 
with ovarian lesions that pathogenetically closely resemble human ovarian cancer. We have 
shown that the direct, local application of a low dose of DMBA to the ovary induces ovarian 
cancer development with distinct preneoplastic and neoplastic stages. We have also revealed that 
gonadotropin hormones contribute to ovarian cancer progression in the rats affecting mostly the 
OSE and leading to the development of putative epithelial cell preneoplasia, serous borderline 
tumors and invasive carcinomas that resemble those appearing in ovaries of animals exposed to 
DMBA alone or DMBA/gonadotropins. The observed statistically significant increase in ovarian 
tumor incidence and malignant progression in animals treated with DMBA/gonadotropin versus 
DMBA alone, further supports the role of gonadotropin hormones in the promotion of ovarian 
cancer development. Tp53 and Ki-Ras point mutations, characteristic for human ovarian 
carcinomas, are also present in DMBA-induced preneoplastic rat ovarian lesions, probably 
confirming their precursor, clonal character. Furthermore, an overexpression of estrogen and 
progesterone receptors in preneoplastic and early neoplastic lesions and their loss in advanced 
tumors, suggest a role of these receptors in ovarian cancer development. We have additionally 
shown that the protein expression of COX-1, and to a lesser degree COX-2, is significantly 
increased in putative preneoplastic and neoplastic ovarian lesions induced by DMBA or 
DMBA/gonadotropins. Given that elevated COX-1 expression has been associated also with 
human ovarian cancers, it is reasonable to test the efficacy of the COX-1 specific inhibitor SC-
560 to prevent the development of ovarian cancer using the DMBA/gonadotropin animal model. 
Previously, our microarray-based genomic analysis of primary human ovarian cancer specimens 
revealed that the expression of the dual ubiquitin-editing enzyme A20, a key regulator of NF-κB 
activation, is lost during ovarian cancer development. This conclusion is based on the fact that 
A20 mRNA expression, which is detected at a moderate level in normal human OSE cells 
(cultured or not), is below reliably detectable levels in all ovarian tumor specimens tested, 
regardless of histological subtype or stage of malignancy. Hence, loss of A20 may represent an 
early, confounding event in ovarian oncogenesis, and may be associated with the frequently 
observed increased, persistent activation of NF-κB, and potentially with the development of 
resistance to platinum-based chemotherapy. Microarray analysis of DMBA/gonadotropin ovarian 
lesions in the rat has revealed no significant changes in the gene expression between 
nonneoplastic and preneoplastic lesions, as well as preneoplastic and neoplastic lesions. 
Differentially expressed genes, some of which are reported to be associated with human ovarian 
cancer, were identified between neoplastic and nonneoplastic samples. The DMBA/gonadotropin 
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model in the rat is suitable for studying the mechanism of chemically-induced carcinogenesis 
leading to ovarian cancer but it’s utility for preventive or preclinical studies remain to be 
verified.  
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ABSTRACT

Animal models of ovarian cancer are crucial for understanding the
pathogenesis of the disease and for testing new treatment strategies. A
model of ovarian carcinogenesis in the rat was modified and improved to
yield ovarian preneoplastic and neoplastic lesions that pathogenetically
resemble human ovarian cancer. A significantly lower dose (2 to 5 �g per
ovary) of 7,12-dimethylbenz(a)anthracene (DMBA) was applied to the one
ovary to maximally preserve its structural integrity. DMBA-induced mu-
tagenesis was additionally combined with repetitive gonadotropin hor-
mone stimulation to induce multiple cycles of active proliferation of the
ovarian surface epithelium. Animals were treated in three arms of differ-
ent doses of DMBA alone or followed by hormone administration. Com-
parison of the DMBA-treated ovaries with the contralateral control or-
gans revealed the presence of epithelial cell origin lesions at
morphologically distinct stages of preneoplasia and neoplasia. Their his-
topathology and path of dissemination to other organs are very similar to
human ovarian cancer. Hormone cotreatment led to an increased lesion
severity, indicating that gonadotropins may promote ovarian cancer pro-
gression. Point mutations in the Tp53 and Ki-Ras genes were detected that
are also characteristic of human ovarian carcinomas. Additionally, an
overexpression of estrogen and progesterone receptors was observed in
preneoplastic and early neoplastic lesions, suggesting a role of these
receptors in ovarian cancer development. These data indicate that this
DMBA animal model gives rise to ovarian lesions that closely resemble
human ovarian cancer and it is adequate for additional studies on the
mechanisms of the disease and its clinical management.

INTRODUCTION

Ovarian cancer is one of the leading causes of cancer-related deaths
among women (1, 2). The understanding of the molecular pathogen-
esis of ovarian cancer has been hindered by the lack of sufficient
numbers of specimens at early-stage disease because of its frequent
diagnosis at advanced stages (3, 4). Consequently, the existence of
identifiable precursor lesions that ultimately develop into ovarian
cancer is still debatable (5, 6).

More than 80% of ovarian cancers originate in the ovarian surface
epithelium (7–12). Incessant ovulation, postmenopausal increase of
gonadotropin hormone levels, chronic inflammation, and environmen-
tal carcinogens are assumed to play key roles in ovarian oncogenesis
(13–16).

Animal models that closely recapitulate human ovarian cancer are

crucial for understanding its pathogenesis and for testing new treat-
ment strategies. A number of models have been developed to date on
the basis of carcinogen treatment, gonadotropin/steroid hormone stim-
ulation, and genetic modeling (for review, see refs. 17, 18). The latter
is based on the introduction of genetic alterations through the germ
line or conditional inactivation of certain tumor suppressor genes,
such as Tp53 and pRb (19), or the ectopic expression of certain
oncogenes, or a combination of both (20). Transgenic models, how-
ever, depend strongly on the specificity and timing of expression of
the used promoter in the ovary and, more specifically, in the ovarian
surface epithelium, which until recently was unavailable. Further-
more, most incorporated gene changes thus far are associated with
advanced human ovarian cancer, and their role in early-stage disease
is unknown. Recently, the MISRII promoter, which exhibits a rela-
tively restricted pattern of expression, was used to drive the expres-
sion of the SV40 large T-antigen in the ovarian surface epithelium
(21). Approximately 50% of the female mice bearing the MISRII–T-
antigen transgene developed bilateral, poorly differentiated ovarian
tumors by 6 to 13 weeks of age. Similarly, most genetic models
developed to date are unable to reproduce the histopathological di-
versity of human ovarian cancer and give rise to rapidly developing,
advanced-stage disease at very young age. Hence, although very
important for understanding the role of discrete genes in ovarian
cancer, these models are inadequate for studying the preneoplastic and
early neoplastic stages of the disease or for prevention studies. In
contrast, the ovarian lesions induced by carcinogens and hormones in
general display all three stages of cancer development (initiation,
promotion, and progression). The direct implantation of chemical
carcinogens, such as 7,12-dimethylbenz(a)anthracene (DMBA) in the
rat ovary (22–24), leads to the induction of ovarian tumors at an
incidence of �37%. These include adenocarcinomas, as well as
stroma and mesothelial tumors (22, 23, 25). There is, however, lack of
information regarding the nature and sequence of events elicited by
DMBA and leading to ovarian cancer development.

To improve its usage and physiologic relevance to the human
disease, the DMBA model of ovarian cancer was modified (a) by
significantly decreasing the DMBA dose, thereby preserving maxi-
mally the integrity of the organ and (b) by incorporating multiple
gonadotropin hormone treatments, thus introducing an additional risk
factor associated with human ovarian cancer, known also to induce
hyperovulation and enhanced mitogenesis of the ovarian surface ep-
ithelium (26). Characterization of this modified animal model re-
vealed the appearance of early and advanced lesions with a progres-
sive nature that range from nonneoplastic to preneoplastic to
malignant. Their histopathology and path of dissemination strongly
resemble human ovarian cancer.

MATERIALS AND METHODS

Animals and In vivo Treatments

Six-week-old virgin Sprague Dawley rats (Taconic Farms, Germantown,
NY) were used following NIH and Fox Chase Cancer Center animal care
guidelines. DMBA mixed with beeswax was directly applied to the right ovary
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of 120 animals. The left ovaries were treated with beeswax only. Animals were
treated in three study arms (Supplemental Table 1): 60 animals (arm 1) with
2.5 �g of DMBA and 60 animals (arms 2 and 3) with 5 �g of DMBA. The
latter was subdivided in 2 � 30 and subjected to six cycles of treatment with
pregnant mare’s serum gonadotropin (Sigma, St. Louis, MO) and human
chorionic gonadotropin (Ferring Pharmaceuticals, Los Angeles, CA), once
every 2 weeks, starting at 2 months after DMBA application (arm 3) or with
corresponding vehicle at the same regimen (arm 2). Pregnant mare’s serum
gonadotropin (in sterile saline: 0.9% NaCl; Abbott Laboratories, Chicago, IL)
and human chorionic gonadotropin (in bacteriostatic water) were administered
i.p. and i.m., respectively, each at a dose of 40 IU per animal.

DMBA Suture Preparation

Three or 1.0 g of beeswax (Sigma) was melted in a sterile Petri dish on a
sandbath at 135°C in a chemical fume hood under amber light. One gram of
DMBA (Sigma) was added to the melted beeswax and mixed until melted.
Uncoated silk sutures (7-0 USP; United States Surgical, North Haven, CT)
were dipped into the melted mixture for 2 to 3 minutes. Sutures were air-dried
and wrapped in a sterilized aluminum sheet. Beeswax-control sutures were
prepared similarly. Sutures were stored at 4°C for up to 7 days before surgery.
The average DMBA weight per cm suture was �8 or �15 �g for a 1:3 or 1:1
mixture of DMBA:beeswax, respectively, corresponding to a dose of �2.5 and
�5 �g, respectively, for �3-mm implanted suture.

DMBA Application to the Ovary

Six-week-old virgin rats were anesthetized by inhalation of halothane,
followed by i.p. injection of 1 mL/Kg body weight xylazine (20 mg/mL),
Acepromazine maleate (10 mg/mL) and Ketamine-HCl (100 mg/mL) mixed in
a ratio of 1:2:3, respectively. The rat flanks were shaved and washed with
iodine solution and 70% etomidate. Sterile conditions were used throughout
the surgical procedure. A transverse, �1.5-cm mid-lumbar incision was made
in the right flank of the animal, �5 mm ventral to the lumbar muscles. The fat
pad with the attached ovary was gently pulled out of the cavity with blunt-end
forceps, held by the fallopian tube, and, under amber light, a DMBA/beeswax-
suture was applied across the ovary, contralaterally to the fallopian tube/fibria.
The suture ends were cut flush with the surface of the bursa. The organ was
placed back into the cavity and the muscle wall was sutured with sterile
absorbable sutures (4-0 USP; Fisher Scientific, Pittsburgh, PA). The skin was
closed with wound clips. Similarly, a beeswax-impregnated suture was im-
planted into the left ovary. The animals were observed until awaken and daily
for the next 10 to 14 days. The wound clips were removed 7 to 10 days after
surgery.

Tissue Preparation and Immunohistochemistry

Upon animal sacrifice, the ovaries and other organs (fallopian tubes, uterus,
and mammary glands) were harvested, formalin fixed (18 hours), and paraffin
embedded. Five-micron serial sections from different areas of each organ were
stained with H&E and subjected to histopathological examination. Adjacent,
unstained 5-�m sections were subjected to immunohistochemistry analysis for
the expression of several protein markers (Supplemental Table 3) with reagents
provided with corresponding antibody kits and following standard procedures
(27).

Mutation Analysis

Extraction of Genomic DNA from Ovarian Lesions. Six-micron sections
obtained from formalin-fixed, paraffin-embedded tissue blocks and containing
corresponding ovarian lesions were microdissected (PixCell II LCM system,
Arcturus Engineering, Inc., Mountain View, CA; 3-ms pulse, 75-mW power,
and 15- to 30-�m laser-spot size) to select �2 to 3 � 104 cells. Genomic DNA
was extracted with the PicoPure DNA extraction kit (Arcturus Engineering,
Inc.). Cells were suspended in 50 �L proteinase K buffer [100 mmol/L
Tris-HCl (pH 7.6), 0.5% SDS, 1 mmol/L CaCl2, and 100 �g/mL oyster
glycogen] and digested for 7 days at 55°C with daily addition of 50 �g of
proteinase K. Ten microliters of 25% Tris-buffered Chelex solution were
added and heated at 95°C for 10 minutes. Cell lysates were extracted twice
with phenol:chloroform:isoamyl alcohol (25:24:1) with the addition of
NH4C3H2O2 and once with chloroform. DNA was precipitated with 2 volumes
of 100% ice-cold etomidate, 1 �L of glycogen (20 �g/�L) and 2 �L of 4 N

NaCl at �20°C overnight. Pellets were collected by centrifugation at
13,000 � g for 15 minutes, washed with 70% etomidate, recentrifuged, dried,
and resuspended in 25 �L of 10 mmol/L Tris-HCl (pH 8.0). DNA concentra-
tion was determined spectrophotometrically (ND-1000; NanoDrop Technolo-
gies, Inc., Wilmington, DE).

PCR Amplification, Restriction Digest, and Direct Sequencing. Individ-
ual gene exons were subjected to PCR amplification with corresponding
specific oligonucleotide primers (Supplemental Table 2), followed by diag-
nostic restriction digest and for Ki-Ras and Tp53 also by direct sequencing at
the Fox Chase Cancer Center sequencing facility. Digested and undigested
PCR products were resolved in a 4% Tris-acetate agarose gel containing
ethidium bromide (5 �g/mL; Sigma) for UV-light detection. In cases where
more than one band was visible, the band with the corresponding expected size
was purified from the gel with Gel DNA extraction kit (Qiagen, Valencia, CA).
Genomic DNA obtained from the ovary of an untreated female rat was used as
control. Sequence analysis was carried out with Accelrys SeqWeb V.2 for the
Wisconsin GCG sequence analysis package V.10.

Histopathology and Statistical Analysis

Three 5-�m H&E-stained tissue sections obtained from different areas of
each ovary (one section each at 100 �m from the two ends and one from the
middle of the organ) were subjected to histopathology evaluation. Calls were
made for presence or absence of significant lesions. The latter were subdivided
into three groups: nonneoplastic, putative preneoplastic, and tumor (Table 1).

Generalized estimating equations in the context of logistic regression were
used to model the probability of developing a lesion of a specific severity as
a function of treatment and time on study. The outcome measure is a binary
indicator of whether a significant lesion was observed in a given ovary at time
of sacrifice. The correlation structure was modeled by assuming that two data
points were independent if and only if they were obtained from different
animals (i.e., the left and right ovary assessments are correlated if they came
from the same animal and are independent otherwise). All significance tests
were based on two-sided type 3 score statistics. The left and right ovaries of
each animal were assigned an ordinal score representing the maximum severity
of any lesion observed at time of sacrifice. The lesion score range was as
follows: 1 (no significant lesion), 2 (nonneoplastic), 3 (preneoplastic), and 4
(tumor).

Table 1 Incidence and severity of DMBA-induced ovarian lesions

Severity of lesions

Arm 1 Arm 2 Arm 3 Control ovaries

Total ovaries
DMBA
(2.5 �g)

DMBA
(5.0 �g)

DMBA
(5.0 �g)�hormorne Arm 1 Arm 2 Arm 3

No lesions cnt. (%) 35 (59.32) 12 (40.00) 14 (48.28) 52 (88.13) 23 (76.67) 21 (72.41) 157 (66.52)
Nonneoplastic lesions cnt. (%) * 11 (18.64) 5 (16.66) 1 (3.45) 5 (8.47) 4 (13.33) 2 (6.89) 28 (11.86)
Putative preneoplastic lesions cnt. (%) † 12 (20.34) 13 (43.33) 11 (37.93) 2 (3.38) 2 (6.67) 6 (20.69) 46 (19.49)
Neoplastic lesions cnt. (%) 1 (1.69) 0 (0.00) 3 (10.34) 0 1 (3.33) 0 5 (2.12)
Total animals/Total ovaries cnt. (%) 59 (25.00) 30 (12.71) 29 (12.29) 59 (25.00) 30 (12.71) 29 (12.29) 236 (100)

* Chronic inflammation; foreign body granuloma; prominent corpora lutea; suture granuloma; salpingitis.
† Epithelial hyperplastic lesions: ovarian surface epithelium or bursal flat hyperplasia (either pseudostratification or real stratified hyperplasia); ovarian surface epithelium or bursal

papillae or papillomatosis; inclusion cysts; endosalpingiosis. All these lesions can present with or without atypia.
Abbreviation: cnt., number of lesions, ovaries, or animals.
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RESULTS

Ovarian Preneoplasia and Neoplasia Induced in Rats
with DMBA

Female Sprague Dawley rats were subjected to local application of
DMBA/beeswax to their right ovaries in three treatment arms. Their
left ovaries were treated as internal controls by application of beeswax
alone. To determine the sequence of histologic and molecular changes
elicited by DMBA in the ovary, subgroups of animals were sacrificed
at various time points, up to 12 months (Supplemental Table 1).
Overall, an apparent decrease in volume was evident in the DMBA-
treated ovaries in arms 1 and 2. Relative to the control ovaries, the
histologic and physiologic integrity of the treated organs was well
maintained, with the exception of a small reduction in the rate of
follicular development and corpora lutea formation (Fig. 1A). In arm
3, as a result of the stimulatory effect of the administered gonado-
tropin hormones, the reduction in volume of the DMBA-treated ova-
ries was less apparent. An average 4 to 5-fold larger number of
developing follicles and corpora lutea was observed in both ovaries,
as compared with the ovaries of animals in arms 1 and 2 (data not
shown). No other histologic changes were observed during the first 4
to 5 months after DMBA treatment in the ovaries. At 5 to 6 months
posttreatment and persisting to the end of the experiment, a number of
different types of lesions were observed (Table 1): (a) nonneoplastic
lesions (chronic inflammation, foreign body granuloma, prominent
corpora lutea, suture granuloma, and salpingitis) were found in both
DMBA-treated and control ovaries and at a similar frequency; and (b)
the appearance of lesions of a putative preneoplastic nature and with
a progressive character was observed predominantly in the DMBA-

treated ovaries (Fig. 1, B and C). These represent proliferative epi-
thelial lesions, present either along the surface of the organ or in the
ovarian cortex. Other preneoplastic lesions represent inclusion cysts
or simple serous microcysts; other cortical lesions surrounded by
ovarian stroma and characterized by the presence of several gland-like
structures, usually covered by a simple serous cuboidal epithelium,
and some resembling fallopian tube epithelial differentiation (endosal-
pingiosis). A few preneoplastic lesions exhibit cellular atypia and are
classified as epithelial hyperplastic lesions with dysplasia. None of the
hyperplastic epithelial lesions are invasive; they are well circum-
scribed, small, and with low mitotic rate. These characteristic features
separate them easily from either borderline ovarian tumors (also
known as serous tumors of low malignant potential) or invasive
adenocarcinomas and bona fide ovarian tumors, detected in arms 1
and 3 only. A tumor highly reminiscent of human serous low malig-
nant potential tumor was detected at 12 months after DMBA treatment
in arm 1 (Fig. 2A), an invasive serous adenocarcinoma—at 6 months

Fig. 1. Putative ovarian preneoplastic epithelial lesions induced by DMBA. A, left
panel: beeswax- (L.Ov) and DMBA-treated (R.OV) whole ovaries; middle and right
panels: H&E-stained sections of control (L.Ov) and DMBA-treated (R.Ov) ovaries. B, left
panel: ovarian surface epithelial and bursal epithelial hyperplasia (arrows); right panel:
higher magnification of portions containing papillary bursal epithelial (top panel) and flat
columnar or pseudostratified ovarian surface epithelial hyperplasia (bottom panel). C, left
panel: inclusion cyst with papillae. Note two cross-sections of papillae (arrows) inside the
epithelial gland-like inclusion cyst. Right panel: advanced epithelial papillary hyperplasia.
Note several cross sections of papillary structures on the ovarian surface (arrows). (H&E
staining; bar scale: 100 �m; S-suture).

Fig. 2. Neoplastic lesions induced by DMBA in the ovary. A, noninvasive exophytic
growth of papillary structures forming a serous low malignant potential tumor on the
ovarian surface. Note that the panel to the right shows little or no nuclear atypia of the
tumor cells. B, invasive serous adenocarcinoma. The low magnification panel (left) shows
invasive gland-like neoplastic structures invading the ovarian cortex. The contiguous
panel shows at higher magnification the atypical tumor cells. C, squamous-cell carcinoma
invading the ovary. The contiguous panel shows at higher magnification the atypical
squamous carcinoma cells. D, undifferentiated carcinoma. The contiguous panel shows at
higher magnification the atypical poorly to undifferentiated tumor cells. (H&E staining;
bar scale: 100 �m, low and high magnification at the left and right, respectively).
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in arm 3 (Fig. 2B), a squamous-cell carcinoma—at 9 months, arm 3
(Fig. 2C), and an undifferentiated carcinoma—at 11 months, arm 3
(Fig. 2D).

Statistics

The cumulative incidence of preneoplastic lesions and bona fide
tumors in the DMBA-treated ovaries in arm 1 was 22%, whereas in
arms 2 and 3 it was 2-fold higher (43.33 versus 44.82%, respectively;
Table 1). However, both the preneoplastic lesions and the bona fide
tumors in arm 3 displayed a more complex, advanced histology
relative to those in arms 1 and 2. When all three types of lesions were
considered together in each of the three arms, time to sacrifice was not
a significant predictor of lesion severity (P � 0.356). Thus, the
probability that an animal bore a lesion of a specific degree of severity
was not observed to depend on how long the animal was allowed to
survive before sacrifice. The level of DMBA treatment, however, had
a significant effect on lesion severity (P � 0.0001). Specifically, the
control ovaries had a significantly lower incidence of lesions and at a
lower severity than the DMBA ovaries in arms 1, 2 and 3, respectively
(P � 0.05). Furthermore, the cumulative incidence of preneoplastic
lesions and tumors together was significantly higher in arms 2 and 3
as compared with arm 1 (P � 0.05); however, there was no significant
difference in the incidence of these lesions between arms 2 and 3
(P � 0.73).

Immunohistochemical Characterization of Ovarian Lesions

Epithelial Cell Origin. The epithelial cell origin of the preneo-
plastic lesions and carcinomas was confirmed by their positive anti-
cytokeratin immunostaining, characteristic of most types of epithelial
cells (Fig. 3), and the negative anti-vimentin immunostaining that
detects a variety of mesenchymal cells (data not shown).

Expression of Estrogen (ER) and Progesterone (PgR) Recep-
tors. To determine whether ER and PgR play a role during ovarian
cancer development in this model, their expression status was exam-
ined by immunohistochemistry for ER-� and PgR (A/B). Although
the expression of both receptors is low to undetectable in morpholog-
ically normal ovarian surface epithelium cells, all tested preneoplastic
lesions and the serous low malignant potential tumor are strongly
positive for both ER-� and PgR (Fig. 4, A and B, left and middle
panels, respectively). The expression of both receptors, however, is
either markedly decreased or undetected in the invasive carcinomas
(Fig. 4, C and D, left and middle panels, respectively).

Expression of Tp53. Anti-Tp53 immunohistochemistry was car-
ried out to determine whether Tp53 gene mutations leading to loss of
function and accumulation of the protein are also induced during
ovarian cancer development by DMBA. A strong positive anti-Tp53
immunostaining was detected in the two invasive and the squamous
cell carcinomas (Fig. 4, C and D, right panel, and data not shown) but
not in the preneoplastic lesions (Fig. 4A, right panel) or the serous low
malignant potential tumor (Fig. 4B, right panel).

Mutation Analysis

Tp53 Gene. To examine the mutational status of Tp53 during ovarian
cancer development in this model, genomic DNA was extracted from
microdissected normal-appearing ovarian surface epithelium, preneoplas-
tic lesions, tumors, and a control untreated ovary. Tp53 exons 4 to 8 were
PCR-amplified from purified genomic DNA samples with corresponding
oligonucleotide primers (Supplemental Table 2). PCR products were
subjected to bi-directional sequencing after extraction from agarose gels.
Individual Tp53 mutations were detected in four of the examined pre-
neoplastic lesions and in all tumors (Table 2).

Ki-Ras Gene. To determine whether activating mutations of Ki-
Ras in codons 12, 13, and 61 are associated with ovarian cancer in this
model, genomic DNA, purified as for Tp53 analysis, was used for
PCR amplification with corresponding oligonucleotide primers (Sup-
plemental Table 2). PCR products were subjected to diagnostic re-
striction digest with BSS SI (for codon 61) and bi-directional sequenc-
ing after purification from agarose gels. Only mutation of codon 61
(CAA3CAC; protein Gln3His) was identified in this rat model and
was present in 4 of the 12 examined preneoplastic lesions (Table 2)
and in the invasive adenocarcinoma.

PgR. The presence or absence of an activating mutation of PgRs at
codon 660 was also examined in extracted genomic DNA, with PCR

Fig. 3. Cytokeratin-positive immunostain in preneoplastic and neoplastic lesions in-
duced by DMBA demonstrate their epithelial origin. Positive cytokeratin immunostaining
of ovarian surface epithelium flat stratified (A) and papillary hyperplasia (B), serous low
malignant potential tumor (C), invasive serous adenocarcinoma (D), and undifferentiated
carcinoma (E). (Hematoxylin counterstaining; bar scale: 100 �m).
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amplification with corresponding oligonucleotide primers and diag-
nostic restriction digest with Tsp RI (Supplemental Table 2). Such
mutation was not detected in any of the examined lesions.

DISCUSSION

This study attempted to additionally improve the DMBA-rat model
of ovarian oncogenesis and characterize the distinct stages of preneo-
plasia and neoplasia. The contribution of gonadotropin hormones to
this process was also demonstrated. DMBA treatment of the ovary
induces putative preneoplastic lesions of epithelial cell origin and with

progressive histology that are assumed to represent precursors of
ovarian cancer clonal development. Given the difficulties in obtaining
a consensus on what human ovarian preneoplastic or precursor lesions
are, an attempt was made to classify the putative precursor lesions of
the rat ovary with terminology used for human ovarian epithelial
lesions. The lesions observed in the rat ovary represent proliferative
epithelial lesions of variable degrees of differentiation, without or
with dysplasia, and localized along the ovarian surface and cortex.
Some of the lesions, especially those seen on the surface, are similar
to isolated papillae or diffuse papillomatosis seen in human ovaries. In
addition, there are occasionally other ovarian surface epithelium-

Fig. 4. ER-�, PgR, and Tp53 expression in
putative preneoplastic and neoplastic ovarian le-
sions induced by DMBA. Left panel: anti-ER-�;
middle panel: anti-PgR; and right panel: anti-Tp53
immunostaining of (A) DMBA-treated ovaries con-
taining epithelial flat and papillary hyperplasia, (B)
serous low malignant potential tumor, (C) invasive
serous adenocarcinoma, and (D) undifferentiated
carcinoma. Note that the ER-� and PgR immuno-
stains are markedly decreased in C and D and that
Tp53 immunostain is markedly decreased or absent
in A and B. (Hematoxylin counterstaining; bar
scale: 100 �m).

Table 2 Mutations detected in the Ki-Ras and Tp53 genes in DMBA-induced preneoplastic and neoplastic ovarian lesions in the rat

Type of lesion (cnt.)

Ki-Ras
Codon 61

CAA3CAC
(cnt.)

Tp53 mutations

Rat codon
(Exon)

Human
codon

Mutation:
DNA

Mutation:
protein

Prevalence in human
ovarian cancer

Protein
accumulation

OSE/Bursal epithelial papillae (3) Yes (2) 224 (6) 226 GTG3GCG Val3Ala ND ND
OSE/Bursal epithelial papillae with dysplasia (2) Yes (2) ND N/A N/A N/A N/A ND
Papillomatosis (3) ND 207 (6) 209 AGG3CGG Silent (Arg) ND ND
Inclusion cysts with pappilae (4) ND 209 (6) 211 ACT3ATT Thr3Ile Yes: 0.39% ND

178 (5) 180 GAA3GGA Glu3Gly ND ND
Low malignant potential (LMP) tumor ND 255 (7) 257 Deletion ATC Ile Yes: 0.39% ND
Squamous cell carcinoma ND 151 (5) 153 CCT3TCT Pro3Ser Yes: 0.1% Yes
Cystadenoma and invasive adenocarcinoma Yes 218 (6) 220 CAG3CGG Gln3Arg Yes: 2.4% Yes
Undifferentiated carcinoma (invasive) ND 173 (5) 175 CGC3CTT Arg3Leu Yes: 6.8%

other GYN cancer: 17.6%
Yes

Abbreviations: ND, not detected; N/A, not applicable; GYN, gynecological; cnt., number of lesions from independent ovaries tested for mutation.
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derived structures that were previously described in humans, i.e.,
inclusion cysts or simple serous microcysts. None of the observed
hyperplastic epithelial lesions are invasive and are quite distinct from
either serous low malignant potential ovarian tumors or invasive
carcinomas. The development of the putative precursor lesions gen-
erally precedes the emergence of bona fide tumors, which also display
variable degrees of differentiation and progression, ranging from early
tumors to high-grade malignant, invasive carcinomas. In addition to
the tumors detected in this study, a bilateral invasive carcinoma with
clear-cell histology was detected within 12 months in an animal
whose ovaries were treated bilaterally with �5 �g of DMBA (not part
of the three study arms). This advanced tumor displayed widespread
dissemination to i.p. organs, production of ascites, and metastatic
hemorrhagic foci in the lungs (data not shown).

Statistically, the appearance of lesions of any given severity did not
depend significantly on the time of sacrifice after DMBA treatment;
however, escalation of carcinogen dose combined with hormonal
stimulation increased significantly the severity of the detected lesions.
The cumulative incidence of preneoplastic lesions and tumors was
also equivalently increased significantly at the higher DMBA dose in
arms 2 and 3. Although the lesion incidence in arms 2 and 3 was
similar, the lesions detected in arm 3 were more advanced than those
in arm 2, including bona fide tumors that were not observed altogether
in arm 2. This data demonstrates the strong contribution of gonado-
tropin hormones to the neoplastic progression of the ovarian lesions,
perhaps due to increased ovarian surface epithelium cell proliferation
and their effects on the underlying stroma. As demonstrated earlier,
treatment of rats with pregnant mare’s serum gonadotropin and/or
human chorionic gonadotropin, in the presence or absence of surgical
scarring to the ovary, leads to a 5 to 10-fold increase in the rate of
ovarian surface epithelium cell proliferation (26).

The observed DMBA-induced reduction in ovarian volume, accom-
panied by decreased follicular growth and corpora lutea formation, is
in good agreement with previously published data (28). The apparent
differences in the observed low-dose response and persistence of
ovarian hypoplasia in this study may be due to the slow-release form
of DMBA applied directly to the ovary. Although not yet well
understood in its full complexity, a suggested mechanism underlying
the observed ovarian hypoplasia and cellular destruction is that DNA-
adduct formation by DMBA metabolites leads to Tp53-mediated
inhibition of DNA synthesis, cell growth arrest, and caspase-depend-
ent or independent apoptosis (29–31). Hence, DMBA-induced muta-
tion(s) that disrupt Tp53 function may allow evasion of affected
ovarian surface epithelium cells and contribute to their malignant
transformation.

Nonneoplastic and a small number of preneoplastic lesions, as well
as a small granulosa cell tumor were also detected in control ovaries.
To determine whether such lesions occur spontaneously in this rat
strain, 20 nontreated animals were divided in two groups of 10 and
maintained to the age of 8 and 14 months, respectively. Examination
of their ovaries revealed no significant lesions, which strongly sug-
gests that the lesions observed in the control ovaries may be a
consequence of surgical scarring and chronic inflammation, and/or
carcinogen carryover from the contralateral ovary. This data indicates
that chronic inflammation, a known risk factor of ovarian cancer, may
contribute to the DMBA-induced neoplastic process, either directly on
epithelial cells through the action of secreted inflammatory cytokines
and growth factors or indirectly through their effect on the adjacent
stroma.

This study has additionally demonstrated that specific mutations in
the Tp53 and Ki-Ras genes, which are among the most frequent
mutations found in human ovarian tumors, are also associated with
ovarian cancer induced by DMBA. TP53 mutations are found in 35 to

40% of human ovarian tumors (32–34). The identified rat Tp53
mutations of codons 173 and 218 correspond to human codons 175
and 220, respectively, which are among the most frequent in human
ovarian cancer (6.8% and 2.4, respectively).3 Interestingly, both mu-
tations lead to a characteristic accumulation of Tp53 protein. Activat-
ing mutations of Ki-Ras, including codon 61 detected in multiple
DMBA-induced preneoplastic lesions and in one carcinoma, have
been associated with �20% of human ovarian tumors: of them, �60%
are found in mucinous and �20% in serous carcinomas (35, 36). The
relatively high frequency of Ki-Ras mutations in the preneoplastic
lesions and, especially, in the ones with dysplasia provides a strong
indication of their clonal (i.e., neoplastic) nature. It additionally ar-
gues that Ki-Ras activation, either through mutation or by aberrant
upstream signals, is very important during ovarian cancer develop-
ment. Finally, a significant overexpression of the ER-� and PgR
proteins was also demonstrated in the preneoplastic lesions and the
serous low malignant potential tumor. However, the expression of the
two receptors was markedly decreased or absent in the advanced
carcinomas. The importance of this finding, in view of the existing
controversy over the expression status of ER-� and PgR in human
ovarian cancer (37, 38), mandates additional investigation. Further-
more, the Val660Leu polymorphism that frequently occurs in exon 4 of
PgRs has been suggested to have an association with human ovarian
cancer characteristics and with overall ovarian cancer risk (39).
Population-based studies, however, have demonstrated that no such
association exists (40, 41). Lack of this PgR mutation in the examined
ovarian lesions is additional evidence to the consistency of the DMBA
rat ovarian cancer model with the human disease.

DMBA is a pluripotent carcinogen, which, through the formation of
DNA adducts, induces initiating point mutations that alter the expres-
sion and/or activity of a number of oncogenes and tumor suppressor
genes (42–45). Although DMBA itself is not a known environmental
carcinogen associated with ovarian cancer, it shares similar mutagenic
mechanisms with other polycyclic aromatic hydrocarbons whose
abundance is relatively high in air pollutants and in tobacco smoke
and which have been implicated in human cancer development (46,
47). Hence, the observed effect of DMBA in the ovary may be
representative of the effect that such carcinogens have in the ovaries
of affected women.

Here, we have demonstrated that direct application of a low dose of
DMBA in the rat ovary, alone or combined with multiple cycles of
gonadotropin administration, elicits a neoplastic process that affects
mostly the ovarian surface epithelium and leads to the progressive
development of putative epithelial cell preneoplasia, serous low ma-
lignant potential tumors, and invasive carcinomas. The similarity in
histology and path of dissemination of the DMBA-induced rat ovarian
carcinomas with those in the human, as well as the presence of gene
mutations that are common in human ovarian cancer, demonstrate the
validity of this animal model for additional delineation of the mech-
anisms underlying ovarian tumorigenesis. Finally, DMBA-induced
ovarian oncogenesis in the rat could be used to preclinically test new
agents for the prevention and/or therapy of the disease.
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ABSTRACT
Motivation: Detailed comparison and analysis of the out-
put of DNA gene expression arrays from multiple samples
require global normalization of the measured individual gene
intensities from the different hybridizations. This is needed
for accounting for variations in array preparation and sample
hybridization conditions.
Results: Here, we present a simple, robust and accurate pro-
cedure for the global normalization of datasets generated with
single-channel DNA arrays based on principal component ana-
lysis. The procedure makes minimal assumptions about the
data and performs well in cases where other standard proced-
ures produced biased estimates. It is also insensitive to data
transformation, filtering (thresholding) and pre-screening.
Contact: Christos.Patriotis@fccc.edu

INTRODUCTION
The development of high-density DNA arrays (oligonuc-
leotide and cDNA) has revolutionized our ability to char-
acterize biological processes and samples genetically by
monitoring the relative expression of thousands of genes sim-
ultaneously (Bowtell, 1999; Debouck and Goodfellow, 1999;
Dugganet al., 1999; Lander, 1999). To meet the challenges
for interpretation of this complex data, sophisticated soft-
ware packages have become available for analysis of the gene
expression profiles, such as ScanAnalyze (Eisen and Brown,
1999), ArrayExplorer (Patriotiset al., 2001) and ImaGene
(Biodiscovery, Inc.). An important, but still unresolved, issue
is associated with the normalization of the relative expression
of genes across a series of microarray experiments. In order to
compare the results from multiple samples, which is the ulti-
mate goal of these studies, it is obligatory that the individual

∗To whom correspondence should be addressed.

†Present address: Emory University, GDBBS, 1462 Clifton Road, Dental
Bldg, Suite 314, Atlanta, GA 30322, USA.

array datasets be normalized to correct for the inherent exper-
imental differences. The critical element in this process is the
discrimination of the interesting, biological variation from
the obscuring variation, which is related to the experimental
conditions (Harteminket al., 2001). This is why the initial
attempts towards normalization of array datasets relied on the
concept that a group of genes could be identifieda priori and
serve as ‘housekeeping’ genes, assuming that their expres-
sion will reflect directly the obscuring experimental variation.
As discussed in detail below, if such a subset of genes could
be identified reliably, then well-defined normalization factors
could be estimated to within the accuracy inherent in the meas-
urements. Unfortunately, as shown by others (Butteet al.,
2001; Selveyet al., 2001) and by us in this report, this simple
concept works only in very limited cases. (Here and in the
rest of the paper, we will refer to thea priori specified
housekeeping genes as ‘designated’ in order to distinguish
them from those determined to be the ‘true’ housekeeping
genes. The latter represent the subset of genes whose expres-
sion is invariant to the particular biological and/or experi-
mental variables in the multiple microarray experiments being
compared.)

The realization that in most of the cases the ‘designated’
housekeeping genes cannot be used for reliable normaliza-
tion has spurred the development of alternative approaches for
normalization. The majority of these approaches determine
normalization factors on the basis of averages over the beha-
vior of the entire set of genes measured (Schuchhardtet al.,
2000). Typically, these methods utilize the mean or median of
the array intensities (Quackenbush, 2001) and linear (Golub
et al., 1999) or orthogonal regression (Sapir and Churchill,
2000). A variety of non-linear techniques were also proposed
(Schadtet al., 2000, 2001; Li and Wong, 2001; Bolstadet al.,
2003).

There is also a series of methods that identify a subset of
genes in the data that can be assumed as housekeeping (Zien
et al., 2001; Kepleret al., 2002). All these approaches perform
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satisfactorily when the following two assumptions about the
data are met:

(1) the majority of the genes (in the fitting segment for the
non-linear approaches, or overall) are not affected by
the experimental variables, i.e. they can all be regarded
as housekeeping genes; and

(2) the subset of differentially expressed genes are ‘activ-
ated’ symmetrically, i.e. the overall intensity change of
up- and down-regulated genes is similar.

Here we present a novel normalization approach that per-
forms satisfactorily even when the conditions above are not
met, which is the most commonly observed scenario. In con-
trast to the methods requiring the selection of a baseline array,
this method analyses the entire dataset simultaneously, and, as
such, it is considered a complete data method (Bolstadet al.,
2003). The goal of the technique is to determine in a multi-
array experiment if there is a subset of genes whose expression
may be considered unaffected by the ‘interesting’ (biological)
sources of variation and if there are such, to identify this set of
specific, ‘data-driven’ housekeeping genes and use them for
normalization. Briefly, if the results from each array meas-
urement are represented in a multi-dimensional vector space
where each axis is a different sample, then the entire experi-
ment can be represented as a series of points corresponding to
the strength of each gene’s expression in each sample meas-
ured. If a set of genes with an unchanged relative expression
is present, their intensity levels will represent points along a
straight line through the origin. We present a principal com-
ponent analysis (PCA)-based method for identifying such a
line, if one exists. The factors determined from the expression
of these genes can be used to normalize the gene expression
in the individual array datasets.

MATERIALS AND METHODS
Theory
Consider a gene expression dataset consisting ofm arrays
with n genes each. LetD be the data matrix containing in
its rows the measured expression levels, and letgij be the
measured expression level of thei-th gene in thej -th array
(i = 1, . . . ,n, j = 1, . . . ,m). We seek to identify a subset,S,
of s genes (s≤ n) whose expression remains constant over
the experimental conditions of the study. Mathematically, for
the genes inS the following equations hold:

qjgij = ci or gij = ci/qj ,

whereqj is thej -th normalization constant andci is the true
concentration of thei-th gene, which is constant across the
samples. If we plot the pointsgij in anm-dimensional space,
we can see that they lie along a line through the origin, which
has projections along the axes of{1/qj }. If we can find such a
line, we will have identified our desired relative normalization

constants (relative since unless at least one of thecis is known,
it is impossible to normalize the data absolutely).

We now turn to the problem of identifying the genes inS.
The obvious method is to calculate the densities in the cloud
of n data points in them-dimensional data space, which rep-
resent the directions ofn gene levels in them observations. In
reality, this is difficult because there are approximatelyNm−1

directions for examining if each orientation is divided intoN

segments. In order to reduce the dimensions of the space that
needs to be examined, we use PCA to identify the directions
along which the principal variations of the genetic expressions
lie in the originalm-dimensional space. We project the data
points onto the first two of these directions and examine their
angular distribution to determine if a line through the origin
is present. Note that the original line in the full space need not
lie in this plane as its projection into the plane will also be a
line through the origin.

PCA is used commonly for reducing the dimensionality of
complex data (Anderson, 1971) and has been used previously
in the analysis of microarray data from time-course experi-
ments (Alteret al., 2000, 2003), for normalization of gene
expression ratios obtained from two different microchips of
two-channel arrays (Nielsenet al., 2002) and for partition-
ing large-sample microarray-based gene expression profiles
(Peterson, 2003). It is also an inseparable part for exploration
of large genomic datasets (Misraet al., 2002). Previously,
we have applied the PCA technique for removing ‘unwanted’
variation in multi-spectral datasets (Stoyanova and Brown,
2002).

Briefly, PCA identifies the directions of the largest vari-
ations in the data via the principal components (PCs), and
represents the data in a coordinate system defined by the
PCs (�P1, �P2, . . .), as follows:

D = R1 �P1 + R2 �P2 + R3 �P3 + · · · + Rm
�Pm, (1)

where �Pj (1×m) andRj (n×1) are row and column matrices;
Rj contain the projections of the data along the PCs (j=
1, . . . ,m), generally called scores. Below, some of the relevant
properties of the PCs are listed.

(1) �Pj are eigenvectors of the data-covariance matrix (cal-
culated around the origin, rather than around the mean)
and are orthonormal, i.e.

�Pi · �Pj =
{

0 if i �= j

1 if i = j .

(2) The PCs are ordered by the decreasing amount of vari-
ation in the data they explain. Let�1, �2, . . . ,�m

be the eigenvalues of the covariance matrix (�1 >

�2 > · · · > �m). Each PC explains a portion of the
total variance ofD, proportional to its corresponding
eigenvalue.

(3) The magnitude ofRj is proportional to its correspond-
ing eigenvalue,�j .
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(4) D can be represented sufficiently with fewer thanm

PCs [Equation (1)]. PCA provides a representation of
the data in a lower-dimensional space of significant
variables.

(5) The PCs are a linear combination of the original data.
The coefficients of this linear combination (Ri) are
typically referred to as loadings and represent the pro-
jections of the PCs along the axes of the original
m-dimensional space.

(6) The PCs minimize the squared distances of the variables
(gene-expression levels) and themselves.

From the last three properties, it follows that the loadings of the
first PC may serve as normalization coefficients of the arrays.
In many cases, when the assumptions (1) and (2) (see Introduc-
tion) are met, as discussed in detail below, PCA can provide
directly the normalization coefficients sought. In other cases,
we can use the first two PCs to detect linear behavior in a sub-
set of genesS (s ≤ n) that are the ‘true’ housekeeping genes.
PCA applied only to the genes inS will identify the appropri-
ate normalization line in the entirem-dimensional data space.
Its projections can then be used as normalization factors.

The procedure [dubbed PCA(line)] tests automatically
for the existence of and detects the group of genes, which
are distributed ‘tightly’ along a line in the plane defined by
the first two PCs. We chose this plane because by defini-
tion it contains the largest variations in the expression levels.
Although the actual straight line of the desired normaliza-
tion may not lie completely in this plane, its projection in
the plane is also a straight line and will serve to identify the
desired set of genes. To identify such a line, we divide the part
of the plane that contains all the points into small angular seg-
ments and determine the number of data points (genes) in each
segment. The segment(s) containing the data-driven house-
keeping genes will contain a disproportionally large density
of points. This procedure is described below and given in
detail in Appendix 1.

Initially, we assumeS is an empty set (S≡ Ø). In the plane
defined by�P1 and �P2, we partition the angle through the origin
defined by the genes with maximal and minimal components
on �P2 in p equal angular segments. Letsk (k = 1, . . . ,p)
be the subset of genes inD, that belong to thek-th segment
(s1 ∪ s2 ∪· · ·∪ sp = D). We recommend thatp be set initially
to contain on average at least 10 genes per segment. Letθk

be the angular densities defined as the number of genes in
each segment,sk, andM(θk) andV (θk) be, respectively, the
sample mean and variance ofθk. Then, the density of thek-th
segment is considered to be significant if

θk > M(θk) + µ
√

V (θk), (2)

whereµ is a parameter indicating the number of standard
deviations above the mean that is required for significance. If
a normal distribution ofθk is assumed, thenµ = 1.96 will

correspond to a one-sided test with a type-I error of 2.5%.
However, in most cases, due to different procedures for
microarray image quantification as well as the specific pre-
filtering of the data, the distribution ofθk is unknown. In
cases where a normal distribution ofθk cannot be assumed, it
is recommended that their histogram be examined andµ be
set appropriately. For added stringency of the test, the genes
in segmentsk are assumed to be housekeeping genes only if
θk+1 of the neighbouring segmentsk+1 is also tested signific-
ant. Then the genes in the two segments are merged inS, i.e.
S ≡ sk ∪ sk+1. If the angular density of the genes of further
contiguous segments is detected to be significant, then these
genes are added toS. After all segments are tested, PCA is
applied toS and the reciprocal values of the loadings of the
resultant first PC are used as normalization coefficients.

If the procedure failed to identify at least two significant
contiguous segments, then either all the genes in the data can
be assumed to be housekeeping (S≡ D), or, in the extreme
situation, the housekeeping genes are either too few to be
detected or not existent (S≡ Ø). In the first case, the loadings
of the first PC from the initial PCA ofD are the true normal-
ization coefficients and can be used for direct normalization.
There is not very much to be done in the second case—the
PCA-derived normalization would be as erroneous as the ones
produced by any other linear technique. Letλ1 be the fraction
(in per cent) of the first eigenvalue,�1, from the total variance
in the data. In this case, a lowλ1 (in our experience<60%)
will be indicative of a lack of normalizing genes.

Biological samples (datasets)
Human ovarian surface epithelial cell lines Microarray
datasets obtained from experiments with RNA of human
ovarian surface epithelial (HOSE) cells were analyzed using
Atlas 1.2 Human arrays (ClonTech). The details of array pre-
paration and data extraction are described elsewhere (Patriotis
et al., 2001). Briefly, the HOSE cells were derived from
a short-term primary cell culture obtained from one of
the ovaries of an individual predisposed to ovarian cancer.
The short-term HOSE cell culture was transduced with a
Cytomegalovirus-based vector expressing the Simian Virus-
40 large T-antigen. As a result, thein vitro lifespan of the
cells, while still ‘mortal’ (118M), was considerably extended,
leading to the spontaneous outgrowth of an ‘immortal’/non-
transformed cell line (118Im). Following multiple passages
in culture, the 118Im cell line gave rise spontaneously to
cells that acquired anchorage-independent growth character-
istics and, ultimately, the potential to grow tumoursin vivo
when inoculated in nude mice (118NuTu) (Frolov, A.et al.,
unpublished data). In the first experiment, the cDNA probes
were derived from total RNA purified from 118M, 118Im and
118NuTu. In the second experiment, microarray data were
obtained from 118NuTu cells treated for different lengths of
time (0, 24, 48 and 72 h) with the synthetic retinoic acid
derivative Fenretinide (4-HPR) (Moonet al., 1979).
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Lymphoma data (LD)
The dataset was constructed from the supplementary datasets
of Golub et al. (1999). The microarray measurements were
performed with RNA of samples obtained from bone marrow
and peripheral blood from patients with acute lymphoblastic
leukemia (ALL) or acute myeloid leukemia (AML) at the time
of diagnosis using high-density oligonucleotide Affymetrix
arrays. In the paper referred to, the data were normal-
ized by pair-wise linear regression (LR) between the first
sample (baseline) and the rest of the samples in the data-
set. Only genes with satisfactory quality (marked with ‘P’
in the datasets provided) in each pair were considered for the
regression. The normalized datasets, as well as the normaliz-
ation factors, are supplied at http://www-genome.wi.mit.edu/
cgi-bin/cancer/datasets.cgi. The data used here were non-
processed and ‘non-normalized’, and the combined datasets
resulted in a data matrix containing 72 arrays and 7129 genes.

Simulated data
The values in the simulated datasets were chosen to be real-
istically probable, based on our experience with data obtained
with the Atlas 1.2 CLONTECH arrays (Patriotiset al., 2001).
The number of genes was set to 500, in agreement with
our observation that between 30 and 50% of the genes are
expressed in any of the samples investigated in our lab. In
the first array, the expression levels,gi1 [in arbitrary units
(a.u.)], were simulated using the relationgi1 = 2u, whereu

is uniformly distributed between 1 and 16.
In all simulated datasets of pairs of arrays a multiplication

factor of 1.2 was applied to the second array, equivalent to
q1 = 1 andq2 = 1.2. Gene intensities were assumed to be
background-corrected, and (unless noted otherwise) signals
with intensities less than 200 were zeroed (thresholded).

‘Noise’ data
The sources of noise in microarray datasets are multiple and
complex, and they contribute simultaneously with variable
amounts to the total variance in the data. Generally, the total
noise contribution to the measured signal represents a vari-
able mixture of the contribution of two components: one is
independent of gene intensity and affects the expression of all
genes equally, and the other is gene-dependent and increases
with the magnitude of the gene expression. To investigate
the contribution of noise to the process of normalization, we
simulated two pairs of replicate arrays, as described above.
Random noise was added to each array. In the first set, the
noise was gene independent (N1)—uniformly distributed ran-
dom noise between−2500 and 2500—and in the second set,
a gene-dependent (N2), uniformly distributed noise whose
magnitude was±10% of the gene intensities. Formally,

N1 = −2500+ 5000u

N2 = gi1,2

10
(2u − 1)

u = U(0, 1). (3)

‘Signal’ dataset 1
‘Signal’ dataset 1 (SD1) contained two pairs of simulated
arrays. The first pair satisfied conditions (1) and (2) (see Intro-
duction) by choosing a substantial number of the genes to be
housekeeping (250) and the number and magnitude of change
of up- and down-regulated genes to be equal. The second pair
was constructed to illustrate a scenario where these assump-
tions are not met: the housekeeping genes (150) were not
a majority, and more genes were ‘up-regulated’ (200) than
‘down-regulated’ (150) (the details about the simulated up-
and down-regulation are given in Appendix 2). Two independ-
ent sets of random noise were added to each array, generated
as the sum of half of both gene-dependent and -independent
noise [Equation (3)], i.e.12(N1 + N2).

‘Signal’ dataset 2
‘Signal’ dataset 2 (SD2) contained eight arrays with 500 genes
each. The first array in SD2 was generated randomly, as
described above. The gene expression levels of the remain-
ing seven arrays were generated with the idea of recreating
a scenario where progressive changes occur in the studied
samples (e.g. time-response to treatment or undergoing a pro-
cess of immortalization and malignant transformation). The
details of simulation parameters for up- and down-regulation
are given in Appendix 3. The arrays were multiplied with
coefficients generated at random between 0.3 and 3. Finally,
random noise, generated as described for SD1, was added to
each array.

RESULTS
Housekeeping genes in HOSE cells
Figure 1(a) depicts the correlation plot of the ‘designated’
housekeeping genes in the first experiment with HOSE cells:
118M on thex-axis, and on they-axis 118Im (black series) and
118NuTu (gray series). The expression of these genes is well
correlated (R2 = 0.96), and, in this case, they can be used for
normalization of the data. Figure 1(b) depicts the correlation
plot of the expression of the same set of housekeeping genes
in the 118NuTu, untreated (0 h,x-axis) and treated with 4-
HPR for 24, 48 and 72 h (y-axis; black circles, gray triangles
and shaded squares, respectively). In this case, the correla-
tion between the expression of the ‘designated’ housekeeping
genes is quite poor (R2 = 0.43, 0.81 and 0.85, respectively).
From these data, it is clear that the expression profiles of the
‘designated’ housekeeping genes are changed non-uniformly
in the cells in response to the drug treatment.

‘Noise’ data
Figure 2(a) and (b) (left panels) depict the correlation between
the data in the two pairs of simulated arrays in this dataset
together with the linear trendline through the origin. Note that
the regression coefficient in both cases is very close to the true
value of the multiplication factor 1.2. The fit is slightly tighter
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Fig. 1. Correlation plots of the intensities of the ‘designated’ housekeeping genes in two microarray experiments. (a) HOSE cell lines at
different stages of malignancy, on thex-axis 118M, and on they-axis, 118Im (black) and 118NuTu (gray). Regression lines are indicated in
black and gray, respectively; (b) 118NuTu cell line following treatment with Fenretinide, on thex-axis at 0 h and on they-axis after 24 (black
circles), 48 (gray triangles) and 72 h (squares) of treatment. Regression lines are indicated in black solid, black dashed and gray, respectively
(note that the black solid and black dashed regression lines are overlapping).

for the second dataset (R2 = 0.986 versusR2 = 0.992),
which reflects the smaller contribution of the noise in the
overall gene intensities. Figure 2(c) (left panel) depicts the
correlation between two replicate array datasets obtained from
118M. The genes depicted by gray squares represent the ‘des-
ignated’ housekeeping genes. On the right panels in Figure 2
the correlation of the logarithmic transforms of the data from
the left panels are presented (due to the restriction of the logar-
ithmic function to only positive numbers, for this comparison,
only genes that are expressed simultaneously in the two arrays
are used). Comparison of the graphs of simulated [Fig. 2(a)
and (b)] and real [Fig. 2(c)] noise indicates the similarity in
the overall distributions, although the real data have a greater
variance.

‘Signal’ dataset SD1
The graphs of the two pairs of arrays in this dataset, together
with the regression line through the origin, are presented in
Figure 3. The housekeeping genes are marked in green. In
the case of the first pair [Fig. 3(a)], it is clear that the regres-
sion line is along the line of normalization and, therefore,
all the above reference normalization methods will perform
well. Obviously, this is not the case with the second data-
set [Fig. 3(b)], and we applied the PCA (line) procedure for
determining the subset of housekeeping genes.

After thresholding, 296 genes were found with non-zero
intensities simultaneously in both arrays (132 up-regulated,
88 down-regulated and 76 housekeeping). PCA was applied
to this set (λ1 = 96%). The representation of the data along
the first two PCs is shown in Figure 4(a) [note that the first

PC, �P1, is along the regression line of this rotated version
of Fig. 3(b)]. The procedure for automatic detection of the
housekeeping genes is schematically illustrated in Figure 4(b).
The angle encompassing all data points (between 1.069 and
2.438 radians) was divided into 50 segments. The histogram
of the angular densitiesθk (k = 1, 2,. . . , 50) is presented in
Figure 4(c) [M(θk) = 5.92 and

√
V (θk) = 5.18]. Forµ =

1.96, three contiguous segments, starting atp = 22, contained
points with a significantly higher density [Equation (2)]. A
total of 63 points (subsetS) from these segments were extrac-
ted. These genes (orange points), together with the original set
of housekeeping genes (in green), are presented in Figure 4(d).
The collinearity between the identified genes and the house-
keeping genes is apparent. Thirty-two of the genes inS belong
to the original set of 76 housekeeping genes in the analyzed
data, indicating that the procedure recovered successfully a
substantial fraction of them (32/76, or>40%). Moreover, the
procedure detected an additional 31 genes whose expression
changes in accordance with a housekeeping gene behavior.
PCA was applied to the data inS (λ1 = 99%), and the
first PC loading factors wereq1 = 0.635 andq2 = 0.773,
corresponding to a relative normalization factor of 1.217.

Simulated dataset SD2
PCA was applied to 205 genes with non-zero intensities in
all eight arrays (88 up-regulated, 52 down-regulated and 64
housekeeping) (λ1 = 96%). The points in the�P1 and �P2

plane were within 1.079 and 1.938 radians. As in the case of
SD1, the densities of points in 50 segments were calculated
(M(θk) = 4.08 and

√
V (θk) = 5.21). Forµ = 1.96, three
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Fig. 2. Correlation plots of gene intensities in replicate arrays, displayed on untransformed (left panels) and logarithmic scales (right panels)
with indicated LR line (gray): (a) simulated data, containing gene-independent noise; (b) simulated data, containing gene intensity-dependent
noise; (c) two replicate arrays of 118M cell line. The genes shown in gray squares represent the designated housekeeping genes included in
the arrays by the manufacturer.
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Fig. 3. Correlation plots of gene intensities of two simulated array datasets (SD1) with indicated housekeeping genes (green squares) and
indicated LR line (orange): (a) ‘symmetric’ case, where the majority of the genes are housekeeping and the number and magnitude of up-
and down-regulated genes is similar; (b) the housekeeping genes are of a relatively smaller number, and the up-regulated genes dominate the
distribution.

contiguous segments containing a total of 64 points (subsetS)
contained a significant number of points. The majority of
the points inS belonged to the original set of housekeep-
ing genes analyzed (44, or 69%), and the remaining 20 were
split between the 12 up-regulated and eight down-regulated
genes. PCA was applied to the data inS (λ1 = 99%), and the
normalization coefficientsqj (j = 1, . . . , 8) were calculated
as the loadings of the first PC.

We compared the accuracy of the PCA(line)-estimated nor-
malization factors with the ones estimated by LR and mean
(MEAN). We scaled all normalization factors so that their
sum was equal to 1, and the correlation between the true
values (x-axis) and the estimated values (y-axis) are presen-
ted in Figure 5(a). Although the overall correlation between
the true and estimated normalization factors is quite good
[R2 = 0.9964, 0.9862 and 0.9726 for PCA(line), LR and
MEAN estimates, respectively], it is clear that PCA(line)
provides the best estimates. We also calculated the error for
each individual array, defined as the percentage difference
of the estimated from the true normalization factor, and the
minimum, maximum and average error values are presented
in Figure 5(b). This analysis indicated that the error of the
PCA(line)-derived estimates is on average lower by a factor
of 2 and 3 as compared with the ones derived by LR and
MEAN, respectively.

We further investigated the effect of data thresholding on the
PCA(line) procedure. We re-analyzed SD2 by applying PCA
to all 500 genes in the dataset. Since some of the scores along
�P2 were negative, the data points spanned the entire plane
(between 0.03 and 6.27 radians). In this case, we setp = 200
andµ = 4. Two consecutive segments [Fig. 5(c)], containing

a total of 77 genes, were determined to have significant angu-
lar densities. The overwhelming majority of genes (55) in this
set belonged to the original set of housekeeping genes. The
housekeeping gene sets derived by PCA (line) on thresholded
and unfiltered data were strongly overlapping—all but four
were identical to the 64 housekeeping genes determined with
the thresholded data. Finally, the PCA-determined normaliz-
ation factors in this case were virtually identical to the ones
determined with the thresholded data.

Lymphoma Data
PCA was applied to all 7129 genes in the dataset (λ1 =
88.31%). All loadings of �P1 were scaled by the first one,
resulting in a normalization factor of 1 for the first array.
Figure 6(a) depicts the comparison between LR- and PCA-
derived (yellow circles) values. The high correlation (R2 =
0.99) between the two series is apparent. Further, we applied
the PCA(line) procedure. Three contiguous segments (from a
total of 200), containing 1095 genes, were above the threshold
[M(θk) = 35.64,

√
V (θk) = 72.21,µ = 4]. PCA was applied

to the intensities of the genes inS (λ1 = 93.85%) and the load-
ings of �P1 rescaled appropriately and compared with the LR
results [Fig. 6(a), black circles]. While showing an overall
good agreement with the LR-derived results (R2 = 0.92),
they also indicate, in some individual cases, substantial dif-
ferences with the PCA(line)-estimated values. The average
absolute value of the relative difference between LR- and
PCA-derived factors was 7.52%, with a range of 0.07–30.84%
in the case of array #65 [Fig. 6(a), marked with an arrow]. We
then examined the correlation of the intensities of the genes
marked with ‘P’ (those of satisfactory quality) in arrays # 1
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Fig. 4. (a) The data from Figure 3b, presented in the PC-plane; (b) schematic illustration of segmentation of the part of the PC-plane containing
the data; (c) histogram of the angular densities of the segments; (d) ‘true’ (green) and PCA(line)-detected housekeeping genes (orange).

and # 65 [Fig. 6(b)]. The normalization lines [represented in
orange and blue, respectively, for LR and PCA(line)] indicate
that in the case of LR, a handful of strongly expressed genes
are driving the normalization. A similar graph was obtained
with arrays #1 and #58, which also showed a large difference
between the two normalization procedures.

To determine how the number of segments in the plane
impacts the estimated normalization coefficients, we ran the
procedure withp = 100, 300, 400 and 500. In all cases,
the procedure extracted essentially the same subset of nor-
malizing housekeeping genes. The number of genes for each
p was 1410, 1192, 1092 and 1162, respectively. We estim-
ated a (5× 5) correlation matrix of the derived normalization
factors for each value ofp. All coefficients in the correlation
matrix were greater than 0.994, indicating the high degree
of reproducibility between the derived normalization factors
for different numbers of segments (p). We also estimated

the coefficient of variation (COV) between the five series of
estimates. The average COV for the 72 normalization factors
was 1.71%.

DISCUSSION
Normalization of gene intensities in multi-array experiments
is crucial for the ultimate biological interpretation to be
meaningful (Hoffmannet al., 2002). Only after proper nor-
malization can changes in expression of a given gene amongst
the studied samples in the experiment be characterized quant-
itatively. Conversely, erroneous (or no) normalization may
lead to inaccurate estimation of the changes in gene expres-
sion including wrong conclusions with regard to their up- or
down-regulation. While optimal normalization is still a sub-
ject of discussion, individual investigators are faced daily
with many questions about the analysis of these complex
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Fig. 5. (a) Relation of ‘true’ normalization factors and factors estimated via PCA(line), LR and MEAN in a simulated dataset containing
eight arrays. The black line indicates the line of identity; (b) ranges (minimum and maximum) and average of the absolute values of relative
errors of estimation of the normalization factors in the three estimates; (c) histogram of the angular densities of the segments in the PCA(line)
for unfiltered data.

data. For example, should the array data be logarithmic-
ally transformed prior to normalization; should low intensity
spots be discarded, and, if so, what is the right cut-off
limit for this operation; should the mean or median intens-
ity of the arrays be used for normalization; or alternat-
ively, do ‘designated’ housekeeping genes play reliably their
assigned role?

In this report, we address all these questions and present a
simple procedure for normalization of datasets generated with
single-channel arrays based on PCA. The procedure makes

minimal assumptions about the data and does not require any
pre-processing, pre-screening or filtering of the data.

The need for alternative normalization techniques arose
with the realization that genes assumed as housekeeping and
‘designated’ by the manufacturers as such on arrays are not
reliable for accurate data normalization. In the first experiment
with HOSE cells, investigating a set of three cell lines with
close genetic origin, the ‘designated’ housekeeping genes
change in a coordinated fashion, and it is likely that they
fulfill their role as normalizing genes. This result is anticipated
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Fig. 6. (a) Correlation between LR- estimated (x-axis) and PCA- or PCA(line)-estimated (yellow series and black series, respectively)
normalization factors for the LD. The orange line indicates the identity line. The arrows point at arrays with a large relative difference;
(b) correlation plots of intensities of genes marked with ‘P’ in arrays #1 and #65. The normalization lines derived by the LR and PCA(line)
estimates are indicated in orange and blue, respectively.

since the three cell lines were cultured under standard growth
conditions and the observed differences in the global gene
expression profiles are related to only a small subset of genes
associated with the sequential transition of the cells through
the process of malignant transformation. Conversely, in the
second experiment, the ‘designated’ housekeeping genes
appear to change differentially in response to treatment with
Fenretinide. This is consistent with the dramatic biochem-
ical changes associated with the process of cells undergoing
programmed cell death (Querec, T.D.et al., manuscript in pre-
paration). The major alterations in the global gene expression
profile that precedes and leads to the triggering of apoptosis
affect the expression states of most housekeeping genes.

Pre-processing of the data prior to normalization is an
important issue. Typical steps include background correc-
tion, logarithmic transformation and/or thresholding. We
believe that the background should be removed prior to nor-
malization, so that the normalization line goes through the
origin. Although we simulated gene intensities, as described
in the Materials and methods section, there is no theoretical
basis to assume that real data comply with this distribution.
Log-transformation has the advantage of transforming the
noise distributions approximately to Gaussian. This property
can be used for estimating the probabilities of differentially
expressed genes (Kerret al., 2000). The PCA-based normal-
ization procedure, however, is based on identifying the genes
along the normalization line in the dataset and is invariant to
prior transformation. Moreover, based on ‘noise’-simulated
data, as well as from the HOSE cell replicates, it is apparent
that log-transformation may be detrimental to the analysis as

it increases the relative contribution of the gene-independent
noise in genes expressed at low levels. Because of these
adverse effects, and the fact that by estimating the numbers
of genes in the segmented plane the PCA(line) procedure
allows low-expressed genes to be taken into consideration,
we chose to implement our normalization procedure on raw
(untransformed) data.

The described procedure is also insensitive with respect to
prefiltering (thresholding) of the data, given that the para-
meterµ [Equation (2)] is adjusted appropriately. In the case
of ‘thresholded’ data,µ = 1.96 will be sufficient to discrim-
inate between the sought housekeeping genes and the rest
[Fig. 4(c)]. Thisµ-value will merely distinguish the ‘noise’
genes from the signal ones in non-prefiltered data. Thus, a lar-
gerµ [as in the case shown in Fig. 5(c)] is required to detect
the normalizing genes sought. We therefore strongly recom-
mend exploring the characteristics of the angular histogram
of the data before setting the appropriateµ-value.

The only assumption made about the distribution of the
intensities of the houseskeeping genes for PCA(line) is that
they are distributed along a straight line. This assumption
is very sensible for single-channel arrays, unlike the case
of the double-channel arrays, where it is known that a non-
linear dependence exists between the gene expression levels
among the two channels (Yanget al., 2002). Furthermore, it
has been shown recently that even for these arrays the lin-
ear and non-linear normalization methods perform similarly
(Park et al., 2003). In our experience, most of the non-
linear effects are due to improper scanning settings, which,
besides the unwanted variations, produce saturated spots also.

1781

Cvetkovic, Dusica



R.Stoyanova et al.

We consider the identification of the housekeeping genes
with intensities within the linear range, as proposed by the
PCA(line) routine, to be a reliable and robust source for
normalization.

The linearity is the basis of the stability of the approach with
respect to the parameterp—it is sufficient to detect a small
subset ofS to identify uniquely the normalization line. Con-
versely, a larger set of genes along this line will not impede
the calculation of the normalization parameters. Still, in order
to obtain meaningful histograms of the number of genes in
each segment, we recommend thatp initially be selected to
contain on average at least 10 genes per segment. The con-
dition for linearity naturally excludes genes with saturated
expression levels and it thus contributes significantly to redu-
cing the interference of these typically large signals in the
normalization process.

Conditions (1) and (2) (see Introduction) are instrumental
for the successful performance of the referenced normaliz-
ation procedures. However, in single-channel arrays, such
as the Affymetrix platform and radiolabeled filter arrays,
it is a common phenomenon that the detected number of
up-regulated genes is larger than the number of the down-
regulated ones. This is due to the fact that the signals of genes
expressed at low levels and undergoing down-regulation are
close to or below the background level, and, therefore, their
change is either undetected or deemed statistically insignific-
ant. When these conditions hold, as in the case of the simulated
data in Figure 3(a), PCA will be successful in determining
the normalization factors with the following advantages, as
compared with the other referenced techniques:

• It provides an objective measure through the magnitude
of the first eigenvalue of how ‘tightly’ the data are
distributed along the first PC.

• It simultaneously determines normalizing coefficients for
the entire dataset. A common approach for normalization
of multiple experiments is to choose one array as the
baseline and to apply normalization (Golubet al., 1999).
In order to avoid the lack of symmetry of this procedure,
the baseline is computed frequently as the average gene
expression profile (Tusheret al., 2001). This is achieved
naturally with PCA as the first PC is an approximation of
the ‘average’ array in the dataset.

• Viewing the entire set of multiple array data simul-
taneously allows proper down-weighing of the ‘noise’
genes, which, during individual comparisons, may affect
strongly the calculation of the normalization coefficients.

The advantages of PCA are underscored in the LD example,
where a single PCA step applied to the entire dataset estimates
normalization coefficients that are almost identical to the ones
determined by the pair-wise LR procedures, using only well
measured genes in each pair [Fig. 6(a)].

The PCA(line) procedure, besides having the above lis-
ted general advantages of PCA, can also deal successfully
with situations where conditions (1) and (2) do not apply. In
the simulated datasets, the PCA(line) results are closest to
the true values as judged by the relative mean-square errors
from the three procedures tried. Visual inspection of the
LR and PCA(line) normalization lines in the graph shown
in Figure 6(b) suggests that this is also true for the Affy-
metrix data. In addition, it eliminates the need for using a
baseline array, which, as shown by Bolstadet al. (2003), has
a clear disadvantage relative to the complete data methods for
normalization such as the one proposed here.

In conclusion, the proposed normalization procedure
improves significantly the accuracy and precision of the meas-
ured gene expression levels. Such procedures will become
even more relevant with further refinement and standardiza-
tion of the microarray technology.
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APPENDIX 1: ALGORITHM DESCRIPTION
(1) Construct the data matrixD(i, j ), where

i = 1, . . . ,n(n—total number of genes on each array),

j = 1, . . . ,m(m—total number of arrays in the

dataset).

(2) (Optional) thresholding of the data:
(2.1) Set the values inD smaller than a given value

(e.g. 200 a.u. for the Clontech data) to 0.

(2.2) Remove fromD genes with 0 intensities in at
least one array, resulting in a new data matrix
D′(n′ × m), wheren′ ≤ n.

(3) PCA of D (here and in the rest of the textD should be
substituted byD′ in the case of thresholding, as well as
n by n′).
(3.1) CalculateC—the covariance matrix ofD:

C = 1

n − 1
DTD,

whereDT denotes the transpose matrix ofD.

(3.2) Calculate eigenvectorsQ and eigenvalues� of
the covariance matrixC, i.e.:

CQ = Q�

The rows inQ are the PCs�P1, �P2, . . . , �Pm.

(3.3) Calculate the scoresR = D PT.
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(4) Let Ri
1 andRi

2 be the scores of thei-th gene along�P1

and �P2.

(4.1) Disregard genes for whichRi
2 = 0.

(4.2) Calculate the angleϕi , i = 1, . . . ,n (in radi-
ans), between�P2 and the vector with coordinates
(Ri

1, Ri
2), as follows:

ϕi =




2π + arctan(Ri
1/R

i
2),

if Ri
1 ≤ 0 andRi

2 > 0,

arctan(Ri
1/R

i
2)

if Ri
1 > 0 andRi

2 > 0,

π + arctan(Ri
1/R

i
2)

if Ri
1 > 0 andRi

2 < 0,

i = 1, . . . ,n.

(5) Segment the part of the plane defined by the first 2 PCs
in p partitions.

(5.1) Determine the segmentθ = max(ϕi) − min(ϕi)

(5.2) Determine a stepδ = θ/p

(5.3) Define the subset of genessk in each of thep
segments, defined as

sk ∈ [(k − 1)δmin(ϕi),kδ min(ϕi)],
k = 1, . . . ,p.

(6) Determine the subset of housekeeping genesS.

(6.1) Determine the number of genesθk in each
subsetsk.

(6.2) Estimate the meanM(θk), and variance,V (θk),
of the distribution ofθk.

(6.3) Evaluate if

θk > M(θk) + µ
√

V (θk)

holds for anyk. µ is a cut-off parameter, which
can be set to 1.96 if a normal distribution ofθk is
assumed [see body of the paper, Equation (2)].

If none of the segments satisfies the condition it
means that either none of the genes can serve as
a housekeeping gene (S≡ ∅) or all genes in the
dataset can be assumed to be housekeeping genes
(S ≡ D). Then the loadings of�P1 (3.2) may be
used as normalizing factors.

(6.4) The expression levels of the genes in each array
should be divided by these loadings.

End of the Procedure

(6.5) LetZ denote the set of these segments that satisfy
the condition in 6.3. If for a certainq, ζq ∈ Z,
then

(6.5.1) If ζq+1 /∈ Z, then

(6.5.1.1) If there are no otherqs, for
which ζq ∈ Z, then proceed as
in 6.4.

(6.5.1.2) Conversely, proceed as in 6.5.

(6.5.2) If ζq+1 ∈ Z, then the genes in these two
segments are assumed to be housekeep-
ing genes;S ≡ sq ∪ sq+1. Add to S the
genes of any consecutive segments that
belong toZ.
(6.5.2.1) Apply PCA (3.2) to the gene

expression levels inS. The
loadings of �P1 can be used
as normalizing factors. The
expression levels of the genes
in each array should be divided
by these loadings.

End of the Procedure

APPENDIX 2: SIMULATED DATASET
Let gi1 be the gene intensity of thei-th gene in the first
array (i = 1, 2,. . . , 500). The corresponding intensities in
the second array in SD1 were generated as follows.∣∣∣∣∣

gi2 = q12 ∗ min[αupgi1,βup] i = 1, . . . , 200,
gi2 = q12 ∗ max[αdowngi1,βdown] i = 201,. . . , 350,
gi2 = q12 ∗ gi1 i = 351,. . . , 500,

(A.1)
whereq12 = 1.2, and theαs andβs are random numbers
within the following intervals:

αup = (1, 10],
βup = (gi2,gmax], wheregmax = 80 000,

αdown = (0, 1/10],
βdown = (gmin,gi2], wheregmin = 0.

APPENDIX 3: SIMULATED DATASET
Let gij be the gene intensity of thei-th gene in thej -th array
(i = 1, 2,. . . , 500;j = 1, 2,. . . , 7). Equation (A.1) describes
the generation of the data in SD2 (q12 substituted corres-
pondingly withq1j , randomly generated scaling parameters
between 0.3 and 3), derived from the intensities of the genes
in the first array, whereαj

up andα
j

down are consistent with a
simulated gradual increase in fold of changes between 1.5 and
4.5 with an increment of 0.5, both for up- and down-regulated
genes. Formally,

α
j
up = (1, 1+ j ∗ step],

α
j

down = (0, 1/(1+ j ∗ step)], j = 1, . . . , 7

where step= 0.5.
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